Modeling variability in cardiac electrophysiology

GDR Mamovi, Lyon September 28, 2017

Jean-Frédéric Gerbeau

INRIA Paris & Laboratoire J-L. Lions France

Joint work with:

Damiano Lombardi (Inria) Eliott Tixier (Inria) Blanca Rodriguez (Oxford Univ.)

Electrocardiograms

e.g.: Pullan et al. 05, Sundes et al. 06,... Boulakia, Cazeau, Fernández, JFG, Zemzemi, *Annals Biomed Engng 2010*

First results...

Standard 12-lead ECG

Body Potential u_T (mV)

-1.0 0.0

Potential V_m (mV)

-80.0 20.0

Transmembrane

Schenone, Collin, JFG, Int. J. Num. Meth. Biomed. Engng., 2016

Standard 12-lead ECG

Body Potential u_T (mV)

0.0 10.0

Transmembrane Potential *V_m* (mV)

-80.0 20.0

Schenone, Collin, JFG, Int. J. Num. Meth. Biomed. Engng., 2016

ECG Simulation

N.Tarabelloni, A.M.Paganoni & F.Ieva (Politecnico di Milano)

"normal ECGs" (from Joseph Wartak)

	Р	PR	Q	QR	S	QRS	QT
	wave	interval	wave	interval	wave	interval	interval
Typical	< 0.12	0.12	< 0.04	< 0.03 VI-V2	< 0.04	< 0.10	0.35
ECG		to 0.21		< 0.05 V5-V6			to 0.45
Healthy	0.08	0.19	0.015	0.015 VI-V2	0.01	0.04	0.29
Simul.				0.02 V5-V6			

Wave/Interval	Description	Simulated ECG	
	$\leq 0.25 \text{mV}$	✓ 0.2mV	
P wave	positive I, II, V3 to V6	\checkmark	
	negative aVR	\checkmark	
	limb leads $\leq 25\%$ of R	√	
Q wave	precordial leads $\leq 15\%$ of R	\checkmark	
	always negative	\checkmark except for aVI	
	limb leads $\leq 2mV$	~	
R wave	precordial leads $\leq 3 \text{mV}$	\checkmark	
	always positive, negative in aVR	\checkmark	
	R wave progression, see Figure 12	✓	
	always negative	~	
S wave	small I, II, V5, V6	\checkmark	
	important V1 to V3	\checkmark	
	-0.05mV to 0.1 mV	√	
ST interval	isoelectric	\checkmark	
	displacement of 0.02mV in V1, V3	\checkmark	
T wave	positive I, II, V3 to V6	√	
	negative aVR (follow the QRS)	~	

Variability modeling

Our goal:

- Given measurements in a population of individuals
- Infer a probability density function (pdf) for some parameters

Standard approaches:

- Solve an inverse problem for each individual separately
- Population approach:
 - consider all the individuals together
 - look for average population parameters, standard deviation, ...

E Kuhn, M Lavielle, "Maximum likelihood estimation in nonlinear mixed effects models", Comp Stat Data Analysis, 2005.

E Grenier, V Louvet, P Vigneaux, "Parameter estimation in non-linear mixed effects models with SAEM alrogithm: extension from ODE to PDE", M2AN, 2013.

Variability modeling

Our wishes:

- Non-intrusive: black box algorithm
- Non-parametric: no assumption on the distribution
- Moderate number of model evaluations

Our approach:

• Match the *moments* of the "*observables*" and of the measurements

Variability modeling: moments matching

- Hausdorff moment problem:
 - find a distribution given its moments

$$m_j = \int_{\Theta} \theta^j \rho(\theta) \, d\theta$$

- in general, an ill-posed problem
- Regularization: Maximum Entropy Principle (Jaynes, 1957)
 - Maximises the Shanon entropy:

$$S(\rho) = -\int_{\Theta} \rho(\theta) \log(\rho(\theta)) \, d\theta$$

Under the constraints defined by the available information

Examples

• Information:

– X a random variable with values in [a, b]

Maximum Entropy Principle $\implies \rho$ is a uniform pdf on [a, b]

• Information:

X a random variable with values in ℝ^{*}₊
E(X) < +∞ given
E(log(X)) < +∞ given.

Maximum Entropy Principle $\implies \rho$ is a Gamma pdf

- Information:
 - X a random variable with values in $\mathbb R$

$$\begin{array}{l} - \mathbb{E}(X) < +\infty \text{ given} \\ - \mathbb{E}(X^2) < +\infty \text{ given} \end{array}$$

Maximum Entropy Principle $\implies \rho$ is a Gaussian pdf

Variability modeling: moments matching

- Moment of the parameters are not available
- But empirical moments of measurable quantities can be computed:

$$\hat{\mu}_m(\mathbf{x}_j) = \frac{1}{N} \sum_{i=1}^N y_i(\mathbf{x}_j)^m, \qquad m = 1, \dots, n_{mom}$$

measurements at $\mathbf{x}_j, j = 1 \dots N_{\mathbf{x}}$

 $\mathbf{x} = (x, t) \in \mathcal{D}$ (space-time physical domain)

- Assume that *p* parameters explain the variability: $\boldsymbol{\theta} = (\theta_1, \dots, \theta_p)$
- Simulated moments:

$$\mu_m^{\rho}(\mathbf{x}_j) = \int_{\Theta} \rho(\boldsymbol{\theta}) g(\mathbf{x}_j, \boldsymbol{\theta})^m d\boldsymbol{\theta}$$

unknown pdf model outputs
("observables")

Observable Moments Matching

• Sampling: $\boldsymbol{\theta}_i \in \Theta, i = 1, \dots, N_c$

 \rightarrow Sobol sequence in the parameter space.

The model is evaluated on each θ_i (off-line)
Integrals over Θ approximated by quasi-Monte-Carlo⁰₂₀
We look for an approximation of ρ(θ_i), i = 1, ..., N_c

0.8

Observable Moments Matching

- Maximize the entropy $S(\rho) = -\int_{\Theta} \rho \log(\rho)$ under the constraints
 - $c_{\rho}(\mathbf{x}_j, m) = \mu_m^{\rho}(\mathbf{x}_j, m) \hat{\mu}_m(\mathbf{x}_j, m) = 0$, for N_k points $\mathbf{x}_j \in \mathcal{D}$
- Saddle-point problem: $\inf_{\rho} \sup_{\lambda,\lambda_0,\nu \ge 0} \mathcal{L}(\rho,\lambda,\lambda_0,\nu)$

- "Inf" step done analytically. Positivity constraint automatically verified
- "Sup" step done numerically using quasi-Newton method
- Dense linear system of size $(N_k n_{mom}) \times (N_k n_{mom})$

Selection of physical points: sensitivity

Issue

- Too many points in the physical space
- Many points are redundant: big and ill-conditioned problem

Illustrative example

• Logistic equation $\frac{du}{dt} = k u(1 - u)$ for different values of k

Selection of physical points: sensitivity

Strategy

- Quantify how the parameters affect the variability at a given \mathbf{x}_j .
- Sensitivity Gramm matrix, using the model outputs:

$$\mathbf{C}(\mathbf{x}_{j}) = \int_{\Theta} \begin{bmatrix} \nabla_{\theta} g(\mathbf{x}_{j}, \theta) \end{bmatrix} \begin{bmatrix} \nabla_{\theta} g(\mathbf{x}_{j}, \theta) \end{bmatrix}^{T} \rho(\theta) d\theta$$

estimated off-line
estimated off-line
estimated off-line
then iterate

- Eigenvalue decomposition of $\mathbf{C}(\mathbf{x}_j)$: $\lambda_{j,k}, \mathbf{e}_{j,k}$
- $\mathbf{e}_{j,1}$ = direction in Θ of maximum variation on average
- $\lambda_{j,1}$: mean-squared derivative of the observable along the direction $\mathbf{e}_{j,1}$

Selection of physical points: clustering

- Points with similar dominant directions are considered as redundant
- Agglomerative hierarchical clustering algorithm
- The N_x points of the full physical set are divided into N_k clusters
- Points with maximum trace of $C(x_j)$ are chosen as cluster representative
- Subset S where the moments are matched: the N_k representatives

Example with an ODE

Algorithm

Initial guess: ρ^(0,0) uniform density over Θ
j = 1

- While $||R(\rho^{(j-1,0)})|| \ge \text{tol}$
 - Clustered Sensitivities with $\rho^{(j-1,0)}$

 \implies nested subsets \mathcal{S}^k of k physical points

• n = 1

• While
$$||R(\rho^{(j-1,n-1)})|| \ge \text{tol}$$

• Observable Moments Matching on S^n $\implies \rho^{(j-1,n)}$

$$\bullet \ n \leftarrow n+1$$

•
$$\rho^{(j,0)} \leftarrow \rho^{(j-1,n)}$$

• $j \leftarrow j+1$

• $n_{iter} = j$

Remarks:

• Residual on all the N_x physical points:

$$R(\rho) = \sum_{j=1}^{N_x} \sum_{m=1}^{n_{mom}} c_{\rho}(\mathbf{x}_j, m)^2$$

with

$$c_{\rho}(\mathbf{x}_j, m) = \mu_m^{\rho}(\mathbf{x}_j, m) - \hat{\mu}_m(\mathbf{x}_j, m)$$

• In practice $n_{iter} \approx 3$

Example 1: Fisher-Kolmogorov

• 3 parameters responsible for variability:

 x_0, y_0 (stimulation position) and R (reaction)

• Measurements: $N_x = 81$ points in space $\times 200$ time instants

• Synthetic data: 10^3 parameters sampled from a normal distribution $\mu = [0.55, 0.55, 0.50], \Sigma = \sigma^2 \times I_3$, with $\sigma = 0.1$

• Model evaluated for each sample + noise addition + different mesh

- $N_c = 2048$ Sobol points over $\Theta = [0.1, 1.0]^3$,
- $n_{mom} = 3$
- $N_k = 48$ selected space-time points
- $n_{iter} = 3$ iterations

t < 2

1.0

Example 2: Darcy equation

• Darcy equation:

$$\begin{cases} \mathbf{u} + K \nabla p &= 0 \\ \operatorname{div} \mathbf{u} &= 0, \end{cases}$$

• Measurements: p and u_x on domain boundaries

• Variability: 5 coefficients θ_k defining the permeability

$$K(x,y) = 1 + \sum_{k=1}^{5} \theta_k \Psi_k(x,y)$$

• Synthetic data:

Evaluation of the model for $N = 10^4$ samples of $\boldsymbol{\theta} = (\theta_1, \dots, \theta_5)$. drawn from an uncorrelated multivariate normal distribution $\boldsymbol{\mu} = 2.5 \ 10^{-2} \times [1, 1, 1, 1], \boldsymbol{\Sigma} = \sigma^2 \times \mathbf{I}_5, \sigma = 3.3 \ 10^{-2}.$

• Moment matching algorithm:

 $N_c = 16384$ Sobol points over $\Theta = [-0.2, 0.2]^5$

 $n_{mom} = 3$

25 points selected by the Clustered Sensitivities algorithm (out of 400 sensors)

Cardiac cell model

24

Extra-cellular potential: $u_{\rm e}$

Biomarkers :

$$\begin{cases} C_{\rm m} \frac{\mathrm{d}V_{\rm m}}{\mathrm{d}t} + I_{\rm ion}(V_{\rm m}, \boldsymbol{g}) = 0\\ \frac{\mathrm{d}\boldsymbol{g}}{\mathrm{d}t} + G(V_{\rm m}, \boldsymbol{g}) = \boldsymbol{0} \end{cases}$$

(Hodgkin-Huxley 52, Cronin 81, Pullan et al. 05, Sundes et al. 06,...)

Example 3: atrial fibrillation

• Measurements from 2 populations: healthy (SR), atrial fibrillation (AF)

- Observable: set of AP features (4 biomarkers) for 469 subjects
- Strong inter-subject variability

Sanchez *et al.*, "Inter-Subject Variability in Human Atrial Action Potential in Sinus Rhythm versus Chronic Atrial Fibrillation", Plos One (2014).

Distribution of 4 parameters (healthy and pathological)

Distribution of the biomarkers (estimated and experimental)

- Model: Courtemanche-Ramirez
- # samples: $N_c = 16384$; # moments: $n_{mom} = 2$; # clusters: $N_k = 6$

Example 4: Canine Action Potential

Samples of canine ventricular AP experimental recordings

- Measurements (100 APs) from canine heart cells
- Observable: set of AP features (biomarkers)
- Beat-to-beat variability

Johnstone *et al.*, "Uncertainty and variability in models of the cardiac action potential: Can we build trustworthy models?", *J. of Molecular and Cellular Cardiology* (2015).

Marginal distributions of 3 parameters estimated from experimental data.

- Model: Davies
- Hypothesis: only 3 parameters responsible for the variability
- Validation with individual parameter identification (evolutionary algo: CMA-ES)
- # samples: $N_c = 8192$; # moments: $n_{mom} = 2$; # clusters: $N_k = 3$

Conclusions & Perspectives

Summary

- Approximate parameters distribution from observed variability in a population
- Non-parametric and black-box approach
- Tested with synthetic & experimental data

Perspectives

- How to determine which parameters are responsible for variability?
- What to do with the remaining parameters?
- How to choose relevant biomarkers? [Eliott Tixier's talk]
- Use the obtained distribution as a *prior* for more sophisticated inverse problem algorithms

J-F. Gerbeau, D. Lombardi, E. Tixier, "A moment-matching method to study the variability of phenomena described by partial differential equations", available on HAL: https://hal.archives-ouvertes.fr/hal-01391254/

E. Tixier, D. Lombardi, B. Rodriguez, J-F. Gerbeau, "Modeling Variability in Cardiac Electrophysiology: A Moment Matching Approach", Journal of the Royal Society Interface (2017).

• You can test it: https://github.com/eltix/omm_jrsi.git

- Bi-variate log-normal distribution
- Strongly skewed
- Numerical settings: $N_c = 2048$, $n_{mom} = 4$ and $N_x = 10$

Observable moment matching applied to synthetic data. Log-normal distribution

- Gaussian mixture **bimodal** distribution
- θ_1 and θ_2 are strongly correlated
- Numerical settings: $N_c = 2048$, $n_{mom} = 4$, $N_x = 16$

Observable moment matching applied to synthetic data. Bimodal distribution