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Excitatory neural network on a lattice

Lattice Neural Field Equation (LNFE)

u̇n(t) = −un(t) +
∑
j∈Z

KjS(un−j (t)), (n, t) ∈ Z× (0,∞)

I un(t) ∈ R: membrane potential of neuron labelled n at time t;
I Kj ≥ 0: strength of interactions (all to all – infinite range)
I u 7→ S(u): firing rate function (of sigmoidal type)
I discrete version of

∂tu(x , t) = −u(x , t) +
∫
R
K(y)S(u(x − y , t))dy

References: Wilson-Cowan ’72, Amari ’77, Hopfield’84, Ermentrout ’98,
Coombes ’05, Bressloff ’12



Traveling waves

Traveling wave: speed c ∈ R

un(t) = u(n − ct), u : R→ R

Traveling wave equation: x = n − ct

−cu′(x) = −u(x) +
∑
j∈Z

KjS(u(x − j)), x ∈ R, (1a)

lim
x→−∞

u(x) = 1 and lim
x→+∞

u(x) = 0, (1b)

I FDE of mixed type (ill posed as a Cauchy problem)
I dynamics depend on (all) past j ≤ 0 and (all) future 0 ≤ j

It is assumed that when c = 0 equation (1) is an infinite recurrence.



Assumptions

On the firing rate function S:

Hypothesis (H1) - Bistable nonlinearity. We suppose that:
(i) S ∈ C r

b (R) for r ≥ 2 with S(0) = 0 and S(1) = 1 together with S ′(0) < 1
and S ′(1) < 1;

(ii) there exists a unique θ ∈ (0, 1) such that S(θ) = θ with S ′(θ) > 1;
(iii) u 7→ S(u) is strictly nondecreasing on [0, 1] and there exists

sm > 1 > s0 > 0 such that s0 < S ′(u) ≤ sm for all u ∈ [0, 1].

On the weights (Kj )j∈Z:

Hypothesis (H2) - Weights. We suppose that:
(i)
∑

n∈Z Kn = 1 ;
(ii) for all n ∈ Z, we have Kn = K−n ≥ 0 and K±1 > 0;
(iii)

∑
n∈Z |n|Kn <∞.



Existence of monotone traveling waves

Theorem
Suppose that the Hypotheses (H1)-(H2) are satisfied then there exists a
traveling wave solution un(t) = u∗(n − c∗t) of LNFE such that the profile u∗
satisfies the traveling wave problem (1).
Moreover:
(i) sgn(c∗) = sgn

∫ 1
0 (−u + S(u))du if c∗ 6= 0;

(ii) if
∫ 1

0 (−u + S(u))du = 0 then c∗ = 0;

(iii) if c∗ 6= 0 then u∗ ∈ C r+1(R) and u′∗ < 0 on R;
(iv) if c∗ = 0 we denote (ũ∗n )n∈Z the stationary wave solution, then (ũ∗n )n∈Z is

a strictly decreasing sequence.



Sketch of the proof

The key idea (Bates & Chen ’99) is to regularize the traveling wave equation

−cu′(x) = −u(x) +
∑
j∈Z

KjS(u(x − j))

Let Ψ ∈ C∞(R), Ψ ≥ 0,
∫
R Ψ(x)dx = 1, even and with compact support

ρm(x) := mΨ(mx), Km(x) :=
m∑

j=−m

1
ωm

Kjρm(x − j), with ωm :=
m∑

j=−m

Kj

New traveling wave problem

−cmu′m = −um +Km ∗ S(um), on R, (2a)
lim

x→−∞
um(x) = 1 and lim

x→+∞
um(x) = 0. (2b)

Apply the results of Ermentrout & McLeod ’93 to get a monotone solution
(um, cm) of (2) then pass to the limit m→ +∞.



Uniqueness of traveling waves with nonzero speed

Theorem
Let (u∗, c∗) be a solution to (1) as given in Theorem 1, such that c∗ 6= 0. Let
(û, ĉ) be another solution to (1). Then c = ĉ and, up to a translation, u∗ = û.

Ideas of the proof:

I Construct appropriate sub and super solutions of the form

w±n (t) := u∗
(
n − c∗t + ξ0 ∓ σγ(1− e−βt)

)
± γe−βt , ∀n ∈ Z

for some parameters ξ0, σ, γ and 2β = min {1− S ′(0); 1− S ′(1)}.
I Use comparison principle and a "squeezing" technique to prove uniqueness
I Reference: Chen’97



Spectral stability

LNFE in moving coordinate:

−cu′(x) = −u(x) +
∑
j∈Z

KjS(u(x − j))

Linearized operator around (u∗, c∗) with c∗ 6= 0:

L : H1(R)→ L2(R), Lv := c∗v′ − v +Kδ ∗ [S ′(u∗)v],

where Kδ ∗ w =
∑

j∈Z Kjw(· − j).

Floquet-like spectral structure:

L(e2πix u) = e2πix (2πic∗ + L)u

I spectrum invariant under shifts by 2πic∗
I lattice doesn’t feel oscillations on scale smaller than distance in lattice



Spectral properties of L

Hypothesis (H2η) - Exponential localization. We suppose that:
(i) (Kj )j∈Z satisfies (H2);
(ii) there exists η > 0, such that

∑
j∈Z Kjeη|j| <∞.

Proposition
Assume that Hypotheses (H1)-(H2η) and that (u∗, c∗) is the traveling wave
solution given in Theorem 1 with c∗. We have:

I 0 is an algebraically simple eigenvalue of L with a negative eigenfunction
u′∗;

I the adjoint operator L∗ has a negative eigenfunction, denoted q ∈ C 1(R),
corresponding to the simple eigenvalue 0;

I for all 0 < κ < 2β the operator L − λ is invertible as an operator from
H1(R) to L2(R) for all λ ∈ C\2πic∗Z such that <(λ) ≥ −κ;

I there exist η∗, η∗∗ ∈ (0, η) and some constants C∗ > 0, C∗∗ > 0 such that

|u′∗(x)| ≤ C∗e−η∗|x|‖u∗‖L∞(R), and |q(x)| ≤ C∗∗e−η∗∗|x|‖q‖L∞(R).



Toward nonlinear stability

GOAL: given existence and spectral stability, prove nonlinear stability

LNFE can be written

u̇(t) = F(u(t)), with u = (un)n∈Z ∈ RZ

where ū(t) = (u∗(n − c∗t))n∈Z with c∗ 6= 0 is a solution with

ūn(t) = ūn−1

(
t − 1

c∗

)
, n ∈ Z

I TW is relative periodic orbit
I Linearization:

v̇(t) = DF(ū(t))v(t)

⇒ use spectral information on L to obtain decay estimates on the flow of
v̇(t) = DF(ū(t))v(t) and prove nonlinear stability



Main strategy

1. Moving coordinate frame:

∂tv = Lv, (L − λ)G = δ(· − x0),

I spectral properties on L
I resolvent kernel Gλ(x , x0)

2. Coordinates of the lattice:

v̇(t) = DF(ū(t))v(t), v(t0) = (δ(j − j0))j∈Z ⇒ solution vt0j0 (t)

I Green’s function
Gjj0(t, t0) = vt0j0

j (t)
I Relationship (Benzoni-Gavage, Huot, Rousset ’03)

Gjj0(t, t0) = 1
2πi

∫ R+iπc∗

R−iπc∗
eλ(t−t0)Gλ(j−c∗t, j0−c∗t0)dλ R � 1



Green’s function representation

Proposition
Assume that Hypotheses (H1)-(H2η) and that (u∗, c∗) is the traveling wave
solution given in Theorem 1 with c∗. Then there exists ε > 0 such that for all
λ ∈ C with 0 < |λ| < ε, we have the representation

Gλ(x , x0) = Eλ(x , x0) + G̃λ(x , x0),

where Eλ can be written as

Eλ(x , x0) = − 1
λ
∫
R q(z)u′∗(z)dz

u′∗(x)q(x0),

while the remainder term depends analytically of λ in the region |λ| < ε.

We need estimates on G̃λ and we expect that∣∣∣G̃λ(x , x0)
∣∣∣ ≤ Ce−ω

′|x−x0|, (ongoing work)

for some C > 0 and ω′ > 0.

Related works: Beck etal ’10, Hupkes-Sandstede ’13, Schouten-Hupkes ’17



Discussion

For Lattice Neural Field Equation

u̇n(t) = −un(t) +
∑
j∈Z

KjS(un−j (t))

I existence & uniqueness (up to translation) of monotone traveling front
solutions for "bistable" type of kinetics

I spectral stability of nonzero wave speed traveling fronts (need an
exponential localization of interactions)

I toward a nonlinear stability result – study of pointwise Green’s functions
I difficulty & novelty: infinite nonlinear range interactions
I study numerical approximation schemes of continuous NFE
I study other type of networks and/or kinetics (monostable, with linear

adaptation)




