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Excitatory neural network on a lattice

Lattice Neural Field Equation (LNFE)

in(t) = —un(t) + D KiS(un—5(1)),  (n,1) € Z x (0,00)

JEZ

un(t) € R: membrane potential of neuron labelled n at time t;
K; > 0: strength of interactions (all to all — infinite range)

u — S(u): firing rate function (of sigmoidal type)

vV V. vy

discrete version of

Oru(x, t) = —u(x, t) + / K(y)S(u(x — y, t))dy

R

References: Wilson-Cowan '72, Amari '77, Hopfield'84, Ermentrout '98,
Coombes '05, Bressloff '12



Traveling waves

Traveling wave: speed c € R
up(t)=u(n—ct), u:R—-R

Traveling wave equation: x =n — ct

—cu'(x) = —u(x) + Y _KiS(u(x —j)), x€ER, (1a)
JEL
ﬂrp u(x) =1 and HT u(x) =0, (1b)

> FDE of mixed type (ill posed as a Cauchy problem)
» dynamics depend on (all) past j < 0 and (all) future 0 < j

It is assumed that when ¢ = 0 equation (1) is an infinite recurrence.



Assumptions

On the firing rate function S:

Hypothesis (H1) - Bistable nonlinearity. We suppose that:

(i) S €% (R) for r > 2 with S(0) = 0 and S(1) = 1 together with §'(0) < 1
and S'(1) < 1;

(i) there exists a unique 6 € (0,1) such that S(0) = 0 with §'(9) > 1;
(i) u > S(u) is strictly nondecreasing on [0,1] and there exists
Sm > 1> s > 0 such that s < S'(u) < sp, for all u € [0,1].

On the weights (K})jez:

Hypothesis (H2) - Weights. We suppose that:

(I) ZnGZ K" =1 ’

(ii) for all n € Z, we have K, = K_, > 0 and K+1 > 0;
(i) D ,ez InlKn < oo



Existence of monotone traveling waves

Theorem

Suppose that the Hypotheses (H1)-(H2) are satisfied then there exists a

traveling wave solution uy(t) = u.(n — c.t) of LNFE such that the profile u.
satisfies the traveling wave problem (1).
Moreover:

(i) sgn(c«) =sgn fol(—u + S(u))du if ¢ #0;

) /ffo —u+ S(u))du =0 then ¢, = 0;

(iii) if c. # 0 then u. € €"T}(R) and u}, < 0 on R;
)

if ¢« = 0 we denote (0} )ncz the stationary wave solution, then (@i} )nez is
a strictly decreasing sequence.



Sketch of the proof

The key idea (Bates & Chen '99) is to regularize the traveling wave equation
—cu'(x) = )+ Z K;S(u(x —j))
i€z

Let ¥ € ¥°(R), ¥V >0, f]R V(x)dx = 1, even and with compact support

m

pr(x) i= (), Knlx) i= > = Kipmlx =), with wni= > K

j=—m j=—m
New traveling wave problem
—CmUpy = —Up + K % S(um), on R, (2a)
lim um(x)=1and lim uy(x)=0. (2b)
X——00 Xx—+0o0

Apply the results of Ermentrout & MclLeod '93 to get a monotone solution
(um, cm) of (2) then pass to the limit m — +oo0.



Uniqueness of traveling waves with nonzero speed

Theorem

Let (u., c.) be a solution to (1) as given in Theorem 1, such that ¢, # 0. Let
(@, &) be another solution to (1). Then ¢ = & and, up to a translation, u, = Q.
Ideas of the proof:
» Construct appropriate sub and super solutions of the form
wi(t) == u. (n —cat+& Foy(l— e_ﬂt)) +ve ?, VnelZ

for some parameters &, o, v and 23 = min {1 — 5’(0); 1 — S’(1)}.
» Use comparison principle and a "squeezing" technique to prove uniqueness

» Reference: Chen'97



Spectral stability

LNFE in moving coordinate:
—cu'(x) = — +ZK$ (x —J))
jez
Linearized operator around (ux, ¢.) with ¢, # 0:
L: H'(R) — L*(R), Lv:=cV — v+ Ks*[S (u)v],
where K5 xw ="

JET KJW( _J)
Floquet-like spectral structure:

L(e™u) = ™ (2mic. + L)u

» spectrum invariant under shifts by 2mic.

> lattice doesn't feel oscillations on scale smaller than distance in lattice



Spectral properties of L

Hypothesis (H27) - Exponential localization. We suppose that:
(i) (Kj)jez satisfies (H2);
(ii) there exists n >0, such that ., Kie™ < oo.

Proposition

Assume that Hypotheses (H1)-(H2n) and that (u., c.) is the traveling wave
solution given in Theorem 1 with c.. We have:

» 0 is an algebraically simple eigenvalue of L with a negative eigenfunction
ul;

> the adjoint operator L* has a negative eigenfunction, denoted q € €*(R),
corresponding to the simple eigenvalue 0O;

» for all 0 < Kk < 23 the operator L — X is invertible as an operator from
H'(R) to L*(R) for all X € C\27ic.Z such that R(\) > —k;

> there exist 1., n. € (0,m) and some constants C, > 0, C.. > 0 such that

UL ()] < Coe™™ M ulieey, and [a(x)] < Cone™™ " ||q]| L g)-



Toward nonlinear stability

GOAL: given existence and spectral stability, prove nonlinear stability

LNFE can be written
i(t) = F(u(t)), with u= (up)ncz € R”

where 1i(t) = (u«(n — c«t))nez with ¢, # 0 is a solution with

ﬁn(t):ﬁnfl (t— Cl) , HGZ

» TW is relative periodic orbit

» Linearization:

o(t) = DF(u(t))v(t)

= use spectral information on £ to obtain decay estimates on the flow of
o(t) = DF(u(t))v(t) and prove nonlinear stability



Main strategy

1. Moving coordinate frame:
ov=_~Lv, (L-XNG=0(—x0),
> spectral properties on L

» resolvent kernel G(x, xp)

2. Coordinates of the lattice:

o(t) = DF(a(t))o(t), o(to) = (5(j —jo))jez = solution v®P(t)

» Green's function _
gjjo(tv tO) = n}oJo(t)
» Relationship (Benzoni-Gavage, Huot, Rousset '03)

1 R+imc,
gﬂo(t, l'o) = / e)\(t_to)G,\(j—C*t,jo—C*to)d/\ R>1
R

27T| —imc.



Green's function representation

Proposition

Assume that Hypotheses (H1)-(H2n) and that (u., c.) is the traveling wave
solution given in Theorem 1 with c.. Then there exists € > Q0 such that for all
A € C with 0 < || < €, we have the representation

GA(XaXO) = E)\(XaXO) + EA(X7X0)7
where E) can be written as

1 /
*WU*( )a(xo),

while the remainder term depends analytically of X in the region || < e.

E)\(X7 XO) =

We need estimates on G, and we expect that

‘ax(x,xo) < Ce' Pl (ongoing work)

for some C > 0 and w’ > 0.

Related works: Beck etal '10, Hupkes-Sandstede '13, Schouten-Hupkes '17



Discussion

For Lattice Neural Field Equation

vV v vy

inn(t) = —un(t) + > K;S(un—(t))

JEZ

existence & uniqueness (up to translation) of monotone traveling front
solutions for "bistable" type of kinetics

spectral stability of nonzero wave speed traveling fronts (need an
exponential localization of interactions)

toward a nonlinear stability result — study of pointwise Green's functions
difficulty & novelty: infinite nonlinear range interactions
study numerical approximation schemes of continuous NFE

study other type of networks and/or kinetics (monostable, with linear
adaptation)
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