Traveling fronts for lattice neural field equations

Grégory Faye

CNRS, Institut de Mathématiques de Toulouse

GDR Mamovi September 27-29, 2017 Lyon

Excitatory neural network on a lattice

$$\dot{u}_n(t) = -u_n(t) + \sum_{j \in \mathbb{Z}} K_j S(u_{n-j}(t)), \quad (n,t) \in \mathbb{Z} \times (0,\infty)$$

- ▶ $u_n(t) \in \mathbb{R}$: membrane potential of neuron labelled *n* at time *t*;
- $K_j \ge 0$: strength of interactions (all to all infinite range)
- $u \mapsto S(u)$: firing rate function (of sigmoidal type)
- discrete version of

$$\partial_t \mathbf{u}(x,t) = -\mathbf{u}(x,t) + \int_{\mathbb{R}} \mathcal{K}(y) S(\mathbf{u}(x-y,t)) dy$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

References: Wilson-Cowan '72, Amari '77, Hopfield'84, Ermentrout '98, Coombes '05, Bressloff '12

Traveling waves

Traveling wave: speed $c \in \mathbb{R}$

$$u_n(t) = \mathbf{u}(n-ct), \quad \mathbf{u}: \mathbb{R} \to \mathbb{R}$$

Traveling wave equation: x = n - ct

$$-c\mathbf{u}'(x) = -\mathbf{u}(x) + \sum_{j \in \mathbb{Z}} K_j S(\mathbf{u}(x-j)), \quad x \in \mathbb{R},$$
(1a)
$$\lim_{x \to -\infty} \mathbf{u}(x) = 1 \text{ and } \lim_{x \to +\infty} \mathbf{u}(x) = 0,$$
(1b)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- FDE of mixed type (ill posed as a Cauchy problem)
- dynamics depend on (all) past $j \leq 0$ and (all) future $0 \leq j$

It is assumed that when c = 0 equation (1) is an infinite recurrence.

Assumptions

On the firing rate function S:

Hypothesis (H1) - **Bistable nonlinearity.** We suppose that:

(i) $S \in \mathscr{C}'_b(\mathbb{R})$ for $r \ge 2$ with S(0) = 0 and S(1) = 1 together with S'(0) < 1and S'(1) < 1;

- (ii) there exists a unique $\theta \in (0, 1)$ such that $S(\theta) = \theta$ with $S'(\theta) > 1$;
- (iii) $u \mapsto S(u)$ is strictly nondecreasing on [0, 1] and there exists $s_m > 1 > s_0 > 0$ such that $s_0 < S'(u) \le s_m$ for all $u \in [0, 1]$.

On the weights $(K_j)_{j \in \mathbb{Z}}$:

Hypothesis (H2) - Weights. We suppose that:

(i)
$$\sum_{n \in \mathbb{Z}} K_n = 1$$
;
(ii) for all $n \in \mathbb{Z}$, we have $K_n = K_{-n} \ge 0$ and $K_{\pm 1} > 0$
(iii) $\sum_{n \in \mathbb{Z}} |n| K_n < \infty$.

Existence of monotone traveling waves

Theorem

Suppose that the Hypotheses (H1)-(H2) are satisfied then there exists a traveling wave solution $u_n(t) = \mathbf{u}_*(n - c_*t)$ of LNFE such that the profile \mathbf{u}_* satisfies the traveling wave problem (1). Moreover:

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

a strictly decreasing sequence.

Sketch of the proof

The key idea (Bates & Chen '99) is to regularize the traveling wave equation

$$-c\mathbf{u}'(x) = -\mathbf{u}(x) + \sum_{j \in \mathbb{Z}} K_j S(\mathbf{u}(x-j))$$

Let $\Psi\in \mathscr{C}^\infty(\mathbb{R}), \ \Psi\geq 0, \ \int_{\mathbb{R}}\Psi(x)\mathrm{d}x=1$, even and with compact support

$$\rho_m(x) := m\Psi(mx), \quad \mathcal{K}_m(x) := \sum_{j=-m}^m \frac{1}{\omega_m} K_j \rho_m(x-j), \text{ with } \omega_m := \sum_{j=-m}^m K_j$$

New traveling wave problem

$$-c_m \mathbf{u}'_m = -\mathbf{u}_m + \mathcal{K}_m * S(\mathbf{u}_m), \text{ on } \mathbb{R},$$
(2a)

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

$$\lim_{x \to -\infty} \mathbf{u}_m(x) = 1 \text{ and } \lim_{x \to +\infty} \mathbf{u}_m(x) = 0.$$
 (2b)

Apply the results of Ermentrout & McLeod '93 to get a monotone solution (\mathbf{u}_m, c_m) of (2) then pass to the limit $m \to +\infty$.

Uniqueness of traveling waves with nonzero speed

Theorem

Let (\mathbf{u}_*, c_*) be a solution to (1) as given in Theorem 1, such that $c_* \neq 0$. Let $(\hat{\mathbf{u}}, \hat{\mathbf{c}})$ be another solution to (1). Then $c = \hat{c}$ and, up to a translation, $\mathbf{u}_* = \hat{\mathbf{u}}$.

Ideas of the proof:

Construct appropriate sub and super solutions of the form

$$w_n^{\pm}(t) := \mathbf{u}_* \left(n - c_* t + \xi_0 \mp \sigma \gamma (1 - e^{-\beta t}) \right) \pm \gamma e^{-\beta t}, \quad \forall n \in \mathbb{Z}$$

for some parameters ξ_0 , σ , γ and $2\beta = \min \{1 - S'(0); 1 - S'(1)\}$.

Use comparison principle and a "squeezing" technique to prove uniqueness

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Reference: Chen'97

Spectral stability

LNFE in moving coordinate:

$$-c\mathbf{u}'(x) = -\mathbf{u}(x) + \sum_{j \in \mathbb{Z}} K_j S(\mathbf{u}(x-j))$$

Linearized operator around (\mathbf{u}_*, c_*) with $c_* \neq 0$:

$$\mathcal{L}: H^1(\mathbb{R}) o L^2(\mathbb{R}), \qquad \mathcal{L} \mathbf{v} := c_* \mathbf{v}' - \mathbf{v} + \mathcal{K}_\delta * [S'(\mathbf{u}_*) \mathbf{v}]$$

where $\mathcal{K}_{\delta} * \mathbf{w} = \sum_{j \in \mathbb{Z}} \mathcal{K}_{j} \mathbf{w}(\cdot - j).$

Floquet-like spectral structure:

$$\mathcal{L}(e^{2\pi i x} \mathbf{u}) = e^{2\pi i x} (2\pi i c_* + \mathcal{L}) \mathbf{u}$$

- spectrum invariant under shifts by $2\pi i c_*$
- lattice doesn't feel oscillations on scale smaller than distance in lattice

Spectral properties of \mathcal{L}

Hypothesis (H2 η) - **Exponential localization**. We suppose that:

- (i) $(K_j)_{j\in\mathbb{Z}}$ satisfies (H2);
- (ii) there exists $\eta > 0$, such that $\sum_{j \in \mathbb{Z}} K_j e^{\eta |j|} < \infty$.

Proposition

Assume that Hypotheses (H1)-(H2 η) and that (\mathbf{u}_*, c_*) is the traveling wave solution given in Theorem 1 with c_* . We have:

- \blacktriangleright 0 is an algebraically simple eigenvalue of ${\cal L}$ with a negative eigenfunction $u'_*;$
- ► the adjoint operator L^{*} has a negative eigenfunction, denoted q ∈ C¹(R), corresponding to the simple eigenvalue 0;
- for all $0 < \kappa < 2\beta$ the operator $\mathcal{L} \lambda$ is invertible as an operator from $H^1(\mathbb{R})$ to $L^2(\mathbb{R})$ for all $\lambda \in \mathbb{C} \setminus 2\pi i c_* \mathbb{Z}$ such that $\Re(\lambda) \ge -\kappa$;
- ▶ there exist $\eta_*, \eta_{**} \in (0, \eta)$ and some constants $C_* > 0$, $C_{**} > 0$ such that

$$|\mathbf{u}_{*}'(x)| \leq C_{*}e^{-\eta_{*}|x|}\|\mathbf{u}_{*}\|_{L^{\infty}(\mathbb{R})}, \text{ and } |\mathbf{q}(x)| \leq C_{**}e^{-\eta_{**}|x|}\|\mathbf{q}\|_{L^{\infty}(\mathbb{R})}.$$

Toward nonlinear stability

GOAL: given existence and spectral stability, prove nonlinear stability

LNFE can be written

$$\dot{\mathfrak{u}}(t) = \mathcal{F}(\mathfrak{u}(t)), \text{ with } \mathfrak{u} = (u_n)_{n \in \mathbb{Z}} \in \mathbb{R}^{\mathbb{Z}}$$

where $\bar{\mathfrak{u}}(t) = (\mathfrak{u}_*(n-c_*t))_{n\in\mathbb{Z}}$ with $c_* \neq 0$ is a solution with

$$\bar{\mathfrak{u}}_n(t) = \bar{\mathfrak{u}}_{n-1}\left(t-\frac{1}{c_*}\right), \quad n \in \mathbb{Z}$$

- TW is relative periodic orbit
- Linearization:

$$\dot{\mathfrak{v}}(t) = D\mathcal{F}(\bar{\mathfrak{u}}(t))\mathfrak{v}(t)$$

 \Rightarrow use spectral information on \mathcal{L} to obtain decay estimates on the flow of $\dot{\mathfrak{v}}(t) = D\mathcal{F}(\bar{\mathfrak{u}}(t))\mathfrak{v}(t)$ and prove nonlinear stability

Main strategy

1. Moving coordinate frame:

$$\partial_t \mathbf{v} = \mathcal{L} \mathbf{v}, \quad (\mathcal{L} - \lambda) \mathbf{G} = \delta(\cdot - x_0),$$

- spectral properties on \mathcal{L}
- resolvent kernel $\mathbf{G}_{\lambda}(x, x_0)$
- 2. Coordinates of the lattice:

$$\dot{\mathfrak{v}}(t)=D\mathcal{F}(ar{\mathfrak{u}}(t))\mathfrak{v}(t), \hspace{1em} \mathfrak{v}(t_0)=(\delta(j-j_0))_{j\in\mathbb{Z}} \hspace{1em}\Rightarrow\hspace{1em} ext{solution}\hspace{1em} \mathfrak{v}^{t_0j_0}(t)$$

Green's function

$$\mathcal{G}_{jj_0}(t,t_0) = \mathfrak{v}_j^{t_0j_0}(t)$$

Relationship (Benzoni-Gavage, Huot, Rousset '03)

$$\mathcal{G}_{jj_0}(t,t_0) = \frac{1}{2\pi \mathbf{i}} \int_{R-\mathbf{i}\pi c_*}^{R+\mathbf{i}\pi c_*} e^{\lambda(t-t_0)} \mathbf{G}_{\lambda}(j-c_*t,j_0-c_*t_0) \mathrm{d}\lambda \quad R \gg 1$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Green's function representation

Proposition

Assume that Hypotheses (H1)-(H2 η) and that (\mathbf{u}_*, c_*) is the traveling wave solution given in Theorem 1 with c_* . Then there exists $\epsilon > 0$ such that for all $\lambda \in \mathbb{C}$ with $0 < |\lambda| < \epsilon$, we have the representation

$$\mathbf{G}_{\lambda}(x, x_0) = \mathbf{E}_{\lambda}(x, x_0) + \widetilde{\mathbf{G}}_{\lambda}(x, x_0),$$

where \mathbf{E}_{λ} can be written as

$$\mathsf{E}_{\lambda}(x,x_{0}) = -\frac{1}{\lambda \int_{\mathbb{R}} \mathsf{q}(z) \mathsf{u}_{*}'(z) \mathrm{d}z} \mathsf{u}_{*}'(x) \mathsf{q}(x_{0}),$$

while the remainder term depends analytically of λ in the region $|\lambda| < \epsilon$.

We need estimates on $\widetilde{\boldsymbol{\mathsf{G}}}_{\lambda}$ and we expect that

$$\left|\widetilde{\mathbf{G}}_{\lambda}(x,x_{0})\right| \leq Ce^{-\omega'|x-x_{0}|}, \quad \text{(ongoing work)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

for some C > 0 and $\omega' > 0$.

Related works: Beck etal '10, Hupkes-Sandstede '13, Schouten-Hupkes '17

Discussion

For Lattice Neural Field Equation

$$\dot{u}_n(t) = -u_n(t) + \sum_{j\in\mathbb{Z}} \mathcal{K}_j S(u_{n-j}(t))$$

- existence & uniqueness (up to translation) of monotone traveling front solutions for "bistable" type of kinetics
- spectral stability of nonzero wave speed traveling fronts (need an exponential localization of interactions)
- toward a nonlinear stability result study of pointwise Green's functions
- difficulty & novelty: infinite nonlinear range interactions
- study numerical approximation schemes of continuous NFE
- study other type of networks and/or kinetics (monostable, with linear adaptation)

Thematic semester on Wathematics Computer science and biology

Deterministic and Stochastic Models in Neurosciences

