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Radiotherapy of Gliomas

* Image Based planning :
e GTV : Gross tumor volume
e CTV : Clinical Target Volume
* OAR : Organs at risks
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Current Limits of Radiotherapy Planning

1. Do not account for infiltrative tumor
cells beyond visible boundary

‘ Use of Biophysical Models to estimate
Tumor cell density u(x)
‘ Must account for model parameters uncertainty
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Current Limits of Radiotherapy Planning

1. Do not account for infiltrative tumor
cells beyond visible boundary

‘ Use of Biophysical Models to estimate
Tumor cell density u(x)
‘ Must account for model parameters uncertainty

2. Delineation of Tumor volume is often
difficult and inaccurate

‘ Account for delineation uncertainty




Tumor Extension & Growth Models

* Tumor Growth Model FKPP: Cell denstty Dy y D2y D3

R
* Anisotropic diffusion due to white matter fibers S
e Estimate tumor cell density during 2 time points
* Depends on speed ,/pD and invisibility index |D

— Position

p

Reaction Diffusion equation: @ : Tumor cell density

ol D : Diffusion coefficient
ot |‘7(l V.), T ‘pl(l B l), p : Proliferation rate

|

Diffusion Proliferation




Tumor Growth Model

Reaction Diffusion equation: @ : Tumor cell density

@ = VDVl + Pl - B D : Diffusion coefficient

ot p : Proliferation rate

Discretization with LBM on multi-core CPUs

Axial Coronal Sagittal

Harpold, H. et al.: The evolution of mathematical modeling of glioma proliferation and invasion. Journal of Neuropathology &
Experimental Neurology (2007)



Estimating Tumor Extension

* C(x) only depends on contour and “invisibility index” i = %
* Asymptotic analysis of FK ~ ~
leads to solving Eikonal eq. \/Vli /(DVE) =1, (]’(1“): u,
ou (l—ﬁ)

[ ]
= r—

¢

U=0.8 U=0.2
* Solved with Anisotropic Fast Marching Algorithm

E. Konukoglu, O. Clatz, P.Y. Bondiau, H. Delingette, N. Ayache. Extrapolating Glioma Invasion Margin in
Brain MRI: Suggesting New Irradiation Margins. Medical Image Analysis 2010.



Coupling between Biophysical Models and

Medical Imaging

Personalization
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Uncertainty Quantification
in Medical Image Analysis

* Widely Ignored 1ssue

» Example : Image Segmentation

Potentially Large Inter Expert Variability



State of the art : Uncertainty in segmentation

 Generative probabilistic models:

e Maximum a Posteriori or Maximum Likelihood

» Seeked Uncertainty p(Z):
« Joint posterior probability of shape and Image parameters
p(6s,0;|Data) - p(Z|I) = | p(Z|6s,6,)p(bs, 6;|Data)dbs d6,
* Current approach :
 Stochastic Sampling (MCMC) for small problems

* Often use “Mean Field Approximation” or “Variational Bayes™ for
large problems p(6;, 85|Data ) = []; p(6;|Data)

10



|

Image

Acquisition

Common Problem

Clinical
Application

Source of uncertainty !
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Common Problem

Solution: Use many segmentations to evaluate the uncertainty

* Multiple clinicians segmentations

Time & Resource consuming !

« Automatically create numerous plausible segmentations from a
single expert one
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State-of-the-Art : Sampling
Probabilistic Generative Image Models

Samples from Log Odds
Samplels?}’gllnsﬁ)iﬁrkov Random Field

Input Image Manually / Automatically
Segmented Image

Lack of spatial coherence and plausibility

Warfield, S.K. et al.: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image
segmentation. [IEEETMI (2004)

Pohl, K. M. et al.: Using the logarithm of odds to define a vector space on probabilistic atlases. Medical Image Analysis (2007)
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Our Approach: GPSSI for segmentation
sampling

[ Gaussian Process: ] Geodesic Distance Map :
Segmentation as a level set

» Zero Level Set ->Input Segmentation
* Slope depends on Intensity Variation

Segmentation ~ N (u,X)



GPSSI
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(Gaussian Process:
Segmentation as a level set
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Our Solution: GPSSI

[ Gaussian Process: ]
Segmentation as a level set
: : e Coherent with the
Sweeping Circulant . . .

. 1mage intensity
method: matrix: . Spatiallv smooth
Toivanen Efficient P Y
algorithm factorization

g Mean: ) (Covariance: )
. N
Geodesic + Squared r— Samples
_distance | |_exponential L )




Segmentation samples of
brain tumor (T1Gd MRI)
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Control Variability

Squared exponential covariance
d(z1,22)?
Y(z1,T2) = wo eXP(—(i;gmi)

Inter-Sample Dice
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Towards Probabilistic Radiotherapy Planning
* Old Workflow

* New Workflow 1 (Without Any Tumor Model)

Multiple
MCMC Optimisation

Probabilistic Expected Delivered Actual Delivered
Segmentation Samples Prescription Dose Dose Dose



Towards Probabilistic Radiotherapy Planning
* Old Workflow

» New Workflow 2 (with tumor model)

Multiple
MCMC Optimisation
Samples of tumor Expected Delivered Actual Delivered

Segmentation Samples Cell density u(x) Dose Dose



Probabilistic Prescription Dose

Prescription dose: Standard deviation

Brainstem Mean dose of the dose

Sample 40 GTV and brainstems, Compute 40 CTV

Planning: 60 Gy inside the CTV, 0 Gy outside
Uncertain CTV
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Bayesian Personalization of Tumor Models

 Estimate posterior distribution P(D, p| Segmentation) from :

« Edema and Tumor core contours at 2 time points

Posterior Probability
15t Time

=)

20d Time
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Posterior

Probability that D, p match the segmentations Seg?

Posterior: P(D,p | Seg) < P(Segl|D,p) P(D,p)

Gaussian Process Hamiltonian Monte Carlo (GPHMCQC):

* High acceptance rate
e Reasonable number of model evaluations
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GPHMC

Rasmussen, C. E.: Gaussian processes to speed up hybrid Monte Carlo for expensive Bayesian integrals. Bayesian Statistics
(2003)
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/ patients studied

Details for 4 patients

Patients
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Posterior Samples

Patient |

Patient 3

Patient 2

Patient 4
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Posterior Samples

|. Samples from the posterior density of the parameters
2. Comparison with the direct optimization results

3. The personalization captures well the infiltration 1
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Bayesian Model Selection

Use posterior distribution to compare 2 hypothesis :
« M1 : T2-FLAIR abnormality frontier is c= 16 %
e M2 :¢c=2%

Compute Model Evidence (Chib’s method)

P(Segmentation | M, D, p)P(D,p| M)
P(D,p | M,Segmentation)

P(Segmentation | M) =

P(S on | M
Compute Bayes factor, B = (Segmentation | M)

P(Segmentation | M5)

Results slightly leans towards the 16 % threshold
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Probabilistic Delivered Dose

 Model tries to minimize tumor cell survival and maximize
survival of organs at risk

Prescription Dose 1 ~ 60

e  Maximum A Posteriori
d = argming Z uMAPexp(—ad;) 0.5 30

i

* Probabilistic
d = argming E[z u; exp(—ad;)] 0 0

: Tumor cell density: u Delivered dose d
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Effect of Segmentation Sampling & Tumor
extension Modeling

Prescription

IMRT

Scenario 3:
Mean tumor cell density

Segmentation
samples

Scenario 3

2 time points +

segmentation O O O
samples
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Summary of Uncertainty in Radiotherapy
Planning

Without tumor model :
 Probabilistic CTV by averaging plausible CTV

With Tumor model

* Probabilistic CTV by including estimation of tumor cell density

Dose Delivery planning can account for effect of
segmentation and model parameters uncertainty

Full Posterior with GPHMC for small number of parameters
First steps towards Bayesian model selection
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Perspectives

* Develop 1image segmentation and registration methods with
“meaningful” uncertainty quantification

* Need for reduced biophysical models for Bayesian
personalization and model selection

» Adapt clinical decision process indices to uncertain
measurements
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