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Point processes

F We consider point measures on R. N (R) is the set of counting measures
embedded with the topology of vague convergence.
For a point measure N, a Borel set E and a measurable function f :

N(f ) =

∫
R

f (x)N(dx) =
∑

x∈supp N

f (x),

N(E) =N(1E ) = Card(supp(N) ∩ E).

F Given a filtration (Ft )t≥0, the conditional intensity is the function Λ s.t.

Λ(t) = lim
h→0

1
h
E
(
N([t , t + h)) | Ft

)
.

We have:
E
(
N(f )

)
= E

( ∫
R

f (s)Λ(s)ds
)
.

F An example of random point measure is the Poisson point process (PPP)
with intensity Λ ≡ λ.
The PPP exhibits a ‘lack of memory’ property.
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Definition of Hawkes processes

F Def: Let λ > 0, h be a measurable function from (0,+∞)→ R and
m be a probability measure on N ((−∞,0)).

The point process Nh on R is a Hawkes process on (0,+∞) with
initial condition N0 ; m if the conditional intensity measure of
Nh|(0,+∞) is absolutely continuous w.r.t. the Lebesgue measure with
density:

Λh(t) =
(
λ+

∫ t

0
h(t − u)Nh(du)

)+

=
(
λ+

∑
u≤t,u∈Nh

h(t − u)
)+

.

F The function h is the reproduction function.

h > 0: self-excitation.
h < 0: inhibition.

The function h encodes for an underlying age-structure.
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Motivations
F Modelling of earthquakes (Hawkes Adamopoulos 73, Ogata 88),

F financial markets (Bacry et al. 2011)

F Modelling neuron transmissions (Reynaud 13, Delattre Fournier Hoffmann
16, Chevallier 17, Hodara Löcherbach 17...)

In particular, in the mean-field limit of large networks of neurons (Delattre et
al., Chevallier 17, Ditlevsen and Löcherbach 17) we have propagation of
chaos characterized by ‘typical’ nonlinear PP, related with ODEs and PDEs.

Aims:

F Existence, Uniqueness, Coupling with h+

F Probability toolbox, for statistics ?

For example Reynaud-Bouret and Roy establish deviation inequalities
in the case h ≥ 0 for

1
T

∫ T

0
f
(
Nh(.+ t)

)
dt .
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Assumptions on h
F L(h) = sup{t > 0, |h(t)| > 0} < +∞.

F ‖h+‖1 < 1.

F Em

(
N0(−L(h),0]

)
< +∞.

F Prop: Under these assumptions, there is no explosion of the
Hawkes processes (assuming existence).

Em
(
Nh(0, t ∧ Uh

k )
)

= Em

(∫ t∧Uh
k

0
Λh(u)du

)
= Em

(∫ t∧Uh
k

0

(
λ+

∫
(−∞,u)

h(u − s)Nh(ds)
)+ du

)
≤ λt + Em

(∫ t∧Uh
k

0

∫
(−∞,0]

h+(u − s)N0(ds)du
)

+ Em

(∫ t∧Uh
k

0

∫
(0,u)

h+(u − s)Nh(ds)du
)

≤ λt + ‖h+‖1Em
(
N0(−L(h), 0]

)
+ ‖h+‖1Em

(
Nh(0, t ∧ Uh

k )
)

implying

0 ≤ Em
(
Nh(0, t ∧ Uh

k )
)
≤

1
1− ‖h+‖1

(
λt + ‖h+‖1Em

(
N0(−L(h), 0]

))
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Existence and uniqueness (1)

F Equation driven by a Poisson point measure.

Nh = N0 +

∫
(0,+∞)2

δu1θ≤Λh(u)Q(du, dθ),

∀u > 0, Λh(u) =
(
λ+

∫
(−∞,u)

h(u − s)Nh(ds)
)+

.

F Picard iteration method: see Brémaud Massoulié (96).

F In the case where h ≥ 0, we have a cluster representation of Nh:

(i) ‘Ancestors’ immigrate with rate λ,
(ii) An atom at time s is considered as an individual born at time s, with
lifetime L(h).
It gives birth with rate h(.− s) :
The offspring number is a Poisson random variable with parameter ‖h‖1.
The birth times of these offspring are drawn independently in (s, s + L(h))

with density h(.)/‖h‖1.
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Existence and uniqueness (2)
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F The Hawkes process is then the superposition of these sub-critical
age-structured Galton-Watson trees.

F For general h, the cluster representation is no more true.
Pruned tree representation (complicated).
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Existence and uniqueness (3)

F Equation driven by a Poisson point measure.

Nh = N0 +

∫
(0,+∞)2

δu1θ≤Λh(u)Q(du, dθ),

∀u > 0, Λh(u) =
(
λ+

∫
(−∞,u)

h(u − s)Nh(ds)
)+

.

F Using coupling methods, we can show that:

Prop: If ‖h+‖1 < 1 and Em(N0(−A,0]) < +∞,

(i) There exists a unique strong solution of the Equation driven by Q.
(ii) For all Borel set B of R, Nh(B) ≤ Nh+

(B) a.s.

F This allows to control Nh with Nh+

.
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Auxiliary Markov process

F Let A > L(h) be a window of interest.

F Assume that we are interested in the asymptotic properties of

1
T

∫ T

0
f
(
Nh(.+ t)

)
dt ,

where f is a function on N (−A,0] that is locally bounded w.r.t. the
variation norm.

F It is natural to introduce:

Xt = (StNh)|(−A,0] = Nh|(t−A,t](.+ t).

F Prop: The process (Xt )t≥0 is a strong Markov process with initial
condition X0 = N0|(−A,0] in D(R+,N (−A,0]).

For Markov processes, the properties of 1
T

∫ T
0 f (Xt )dt can be studied

by renewal properties.
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Renewal times
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F We define for Nh (or X ):

τ = inf{t > 0 : Xt− 6= ∅,Xt = ∅}

= inf{t > 0 : Nh[t − A, t) 6= 0,Nh(t − A, t ] = 0}
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Ergodic theorem

F Th:

1
T

∫ T

0
f ((StNh)|(−A,0]) dt Pm−a.s.−−−−−→

T→∞
πAf =

1
E∅(τ)

E∅
(∫ τ

0
f (Xt ) dt

)
=

1
E∅(τ)

E∅
(∫ τ

0
f (N|(t−A,t](·+ t)) dt

)
.

Moreover,

Pm

(
(StNh)|[0,∞) ∈ ·

) total variation−−−−−−−→
t→∞

PπA (Nh ∈ ·)
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Idea of proof

F The idea is to decompose the path of (Xt ) into independent
excursions outside ∅.

∫ T

0
f (Xt ) dt =

∫ τ0

0
f (Xt ) dt +

KT∑
k=1

Ik f +

∫ T

τKT

f (Xt ) dt

where Ik f =
∫ τk

τk−1
f (xt )dt and KT = max{k ≥ 0, τk ≤ T}.

F The strong law of large numbers yields that

1
KT

KT +1∑
k=1

Ik f Pm−a.s.−−−−−→
T→∞

E(I1f ) = E∅
(∫ τ

0
f (Xt ) dt

)
.
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Central Limit theorem

F Th: As soon as

σ2(f ) =
1

E∅(τ)
E∅
((∫ τ

0
(f (Nh|(t−A,t](·+ t))− πAf ) dt

)2)
<∞

then:

√
T
(

1
T

∫ T

0
f (Nh|(t−A,t](·+ t)) dt − πAf

)
in law−−−−→
T→∞

N (0, σ2(f )) .
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Deviation inequalities

F Prop: Let ε > 0. Assume also that a ≤ f ≤ b. There exists constants C(f )
and D(f ) such that:

P∅
(∣∣ 1

T

∫ T

0
f (Xt )dt − πAf

∣∣ ≥ 1
T
(
(b − a)E∅(τ) +

C(f )

2
log
(4
ε

)
+

1
2

√
C2(f ) log2 (4

ε

)
+ 4TD(f ) log

(4
ε

)))
≤ ε.

Sketch of proof

F We have to establish deviation inequalities for τ . It is natural to introduce
the same quantity τ+ for Nh+

.

Pm(τ ≤ τ+) = 1.

F It now remains to study τ+, i.e. the case when h ≥ 0.

We have the cluster representation, and the problem is associated with a
problem of queues.
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Queueing processes

F Assume h ≥ 0. Let us denote by H the height of one of these G.W.
trees.

P(H > x) ≤ C exp(−γx),

where γ = (‖h‖1 − log(‖h‖1)− 1)/L(h) and C = exp(1− ‖h‖1).

F M/G/∞ queue: arrivals at rate λ, service duration H + A, infinite
number of servers.

F Prop: Assume that h ≥ 0.

(i) If λ < γ, then P∅(τ > x) = O(e−λx ),

(ii) If γ ≤ λ, then for any α < γ, P∅(τ > x) = O(e−αx ).

(proof based on a formula by Takacs for the Laplace transform
E(e−sB) of the busy period, then work for showing that the abscissa
of convergence is σc ≤ −γ).


