Graphes et réseaux en Sciences du Vivant

B. Maury
Laboratoire de Mathématiques d'Orsay
\& DMA, Ecole Normale Supérieure

Graphes et réseaux en Sciences du Vivant

B. Maury
Laboratoire de Mathématiques d'Orsay
\& DMA, Ecole Normale Supérieure

« Bon » Laplacien : loi phénoménologique monotone +

.... + principe de conservation

Discret (Poiseuille)

Continu (Darcy)

$\int_{\partial \omega} u \cdot n=0 \Longrightarrow \nabla \cdot u=0 \quad \sum u_{i}=0$
$-\nabla \cdot k \nabla p=-k \Delta p=0$

Principe du maximum très robuste :
Pour toute loi phénoménologique monotone, i.e.

$$
u\left(x_{1}, x_{2}\right)=\varphi\left(p\left(x_{1}\right), p\left(x_{2}\right)\right) \quad \text { avec } \quad \operatorname{sign} \varphi\left(p_{1}, p_{2}\right)=\operatorname{sign}\left(p_{1}-p_{2}\right)
$$

on a

$$
\sum \varphi\left(p\left(x_{0}\right), p\left(x_{i}\right)\right)=0 \Longrightarrow p\left(x_{0}\right) \in \operatorname{conv}\left(p\left(x_{i}\right)\right)
$$

Cadre abstrait

Réseau

$$
\mathcal{N}=(V, E, r, o, \Gamma)
$$

Sommets
o

Frontière
Γ

Cadre abstrait

Loi de Kirchhof

$$
-\sum_{y \sim x} u(x, y)=d u(x)=0
$$

Loi de Poiseuille / Ohm $\quad p(x)-p(y)=d^{\star}(x, y)=r(x, y) u(x, y)$
Analogie avec le problème de Darcy

$$
\left\{\begin{array} { l l }
{ u + \frac { 1 } { r } d ^ { \star } p } & { = 0 \text { in } E } \\
{ d u } & { = 0 \text { in } \stackrel { \circ } { V } = V \backslash (\{ o \} \cup \Gamma) }
\end{array} \quad \left\{\begin{array}{rl}
\mathbf{u}+k \nabla \mathrm{p} & =0 \\
-\nabla \cdot \mathbf{u} & =0
\end{array}\right.\right.
$$

On élimine la vitesse : problème de Dirichlet

$$
\left\{\begin{aligned}
-\Delta p(x) & =0 \quad \forall x \in \stackrel{\circ}{V}, \\
p(o) & =0 \\
p(x) & =g(x) \quad \forall x \in \Gamma
\end{aligned}\right.
$$

avec

$$
-\Delta p(x)=d c d^{\star} p(x)=\sum_{y \sim x} c(x, y)(p(x)-p(y))
$$

Remarque (pour numériciens) : le laplacien discrétisé par éléments finis peut être vu comme exprimant un réseau résistif, si tous les angles sont aigus

$$
\int_{K} \nabla w_{i} \cdot \nabla w_{j}=\operatorname{aire}(K) h_{i} \cdot h_{j} \frac{1}{\left|h_{i}\right|^{2}\left|h_{j}\right|^{2}}=\frac{D}{2} \frac{v_{i} \cdot v_{j}}{\left|v_{i}\right|\left|v_{j}\right|}\left|h_{i}\right|\left|h_{j}\right| \frac{1}{\left|h_{i}\right|^{2}\left|h_{j}\right|^{2}}=\frac{v_{i} \cdot v_{j}}{2 D}
$$

$$
D=v_{i} \wedge v_{j}
$$

La théorie autour du problème de Poisson est essentiellement transposable dans le cas discret (Doyle \& Snell, 84), avec quelques différences

La notion de régularité n'a pas de sens (au moins pour un réseau fini)

Interprétation probabiliste (mouvement brownien remplacé par marche aléatoire, avec probabilités de transition inversement proportionnelles aux résistances)

L'interprétation de l'équation de la chaleur comme flot gradient de l'entropie dans l'espace de Wasserstein est transposable :
flot gradient de l'entropie relative par rapport à la mesure stationnaire pour une certaine métrique de type Wassertein (J. Maas 2011)

Pour les réseaux infinis (la frontière, ou espaces des bouts, est alors l'ensemble des chemins vers l'infini quotienté par la relation d'équivalence d'être confondus au delà d'un certain rang), on ne peut pas définir la trace comme extension de la notion de restriction de fonctions régulières définies au-delà de la frontière : on doit procéder de l'intérieur

Autre contexte : transport congestionné

A. Lefebvre \& S. faure S. Rafai \& P. Peyla (Liphy)

Zuriguel et al. 16’

Parisi et al. 15^{\prime}

Garcimartin et al. 14'

Transport congestionné macro
 (avec A. Roudneff-Chupin et F. Santambrogio)

U : vitesse spontanée
Contrainte: $\quad \nabla \cdot u \geq 0 \quad$ sur la zone saturée
u : vitesse effective, la plus proche de U parmi les vitesses admissibles

Les gens sortent plus vite que s'ils étaient seuls ...

Calculs : A. Roudneff-Chupin \& J. Dambrine

Transport congestionné micro (avec J. Venel)

$U=\left(U_{1}, \ldots, U_{N}\right)$ vitesses spontanées

Contrainte : $\quad G_{i j} \cdot u \geq 0 \quad$ quand i et j sont en contact

$$
G_{i j}=\nabla D_{i j}(x)=\left(0, \ldots, 0,-e_{i j}, 0, \ldots, 0, e_{i j}, 0, \ldots, 0\right) \in \mathbb{R}^{2 N}
$$

Rappel du macro:

Problème de Poisson discret

Discret
$B B^{\star} u=B U$

Continu
$-\Delta p=-\nabla \cdot U>0$

En dim 1:

$B=\left(\begin{array}{rrrr}1 & -1 & 0 & \cdot\end{array}\right) 0.0\left(\begin{array}{cccccc}2 & -1 & 0 & \cdot & \cdot & 0 \\ 0 & 1 & -1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & 0 \\ \cdot & \cdot & -1 & 0 & \cdot & \cdot \\ 0 & -1 & \cdot & \cdot & & \cdot \\ \cdot & & \cdot & \cdot & \cdot & \cdot \\ \cdot & & & \cdot & 2 & -1 \\ 0 & \cdot & \cdot & 0 & -1 & 2\end{array}\right)$

En dimension supérieure ...

Graphe dual

La matrice n'est pas à diagonale dominante,
en outre certains éléments extra diagonaux sont positifs

Calculs: S. Faure

Conséquence concrète : effet faster is slower

