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FIG. 6. Pictures illustrating three different types of clogs. Figure (a) represents the typical clog observed when there is no obstacle or when
the obstacle is far from the door: the hips of the sheep clog at the very door. Figure (b) shows a situation found when the obstacle is placed at
60 cm where sheep clog between the obstacle and the doorjamb. In (c) we display a case where the clogging between the obstacle at 60 cm and
the doorjamb becomes evident as it happens in only one side; all the sheep in the other side have already gone into the barn. The lines drawn
in (a) and (b) indicate the narrower place through which the animals have to pass in each case. Note that (c) corresponds to a video that was
recorded with a different zoom than (a) and (b).

very likely to occur), we observe that the most conspicuous
feature of the distribution reported in Fig. 5(a) for the obstacle
scenario is qualitatively recovered. Of course, the aim of
this representation is just providing a sound interpretation
of the surprising results obtained when the obstacle is at
60 cm. A complete quantitative description would require more
experiments and, overall, to take into consideration the entire
geometry of the system. Indeed, there is a number of aspects
that might have an important influence and should therefore
be considered, such as the merging of flows after the two
bottlenecks [35], the passage through the actual door, and the
fact that the flow through inclined gates is not necessarily the
same than through horizontal ones (see a granular example
in [36,37]).

IV. CONCLUSIONS

In this work we have reported detailed analysis of the effect
that obstacle position has on the sheep flow properties through
constrictions. We show, with live beings, the existence of

FIG. 7. Logarithmic plot of the complementary cumulative dis-
tribution function of !t of two different scenarios. Red dots are used
to represent a hypothetical distribution obtained by combining the !t

of two sets of 16 evacuations through a 77 cm wide door. This is done
hypothesizing that the passage through both sides of the obstacle can
be modeled as an uncorrelated passage through two narrower doors.
For comparison with the results of Fig. 6, the black line indicates the
distribution of !t obtained for the 96 cm wide door without obstacle.

a nonmonotonous behavior of the flow rate versus obstacle
position. Among the locations studied, 80 cm seems to be the
best choice: at a closer position the obstacle is detrimental,
while a more distant placement is beneficial but the effect
becomes weaker than for the 80 cm case. Although we cannot
assure that 80 cm is the optimum position, these results point
towards the existence of such an optimum distance around this
value. At the same time, these outcomes evidence the extreme
sensitivity of the flow to the obstacle position stressing the
great importance of making a proper choice depending on the
situation.

Furthermore, we observe that when the obstacle is too close
to the door the distribution of passage times is notably different
to the other situations. In particular, we observe a reduction of
the probability of finding clogs between 1 and 2 s, followed
by an important increase of this probability for larger clogs.
We propose that this surprising behavior could be related with
an alteration of the nature of clogs as, obviously, when the
obstacle is too close to the door, clogging develops between
the doorjamb and the obstacle instead of at the proper door.
Therefore, the flow rate in this scenario becomes a combination
of the flows through both sides of the obstacle. Based on
this idea we have proposed a simple model that qualitatively
reproduces the features obtained in the distribution function.
We expect further investigation of this effect as, up to now, the
change in the phenomenology when the obstacle is too close
to the door has been only thoroughly studied for the case of
inert grains flowing out of a silo. Unfortunately, in the silo
case, nothing similar to the sheep behavior can be observed as
when there is a clog, it remains stable forever, contrary to what
happens with sheep, pedestrians, or active matter in general.

Finally, we report that, in all the scenarios analyzed, the
flow rate is constant over the whole process. This result differs
from what was recently reported for the case of pedestrians,
and suggests either that pressure has a negligible effect on the
flow rate, or that pressure remains constant during the entrance
procedure. The first hypothesis seems to be incompatible with
the proved fact that the obstacle leads to flow improvement, so
we think that the second option is more trustworthy. Indeed,
looking at the videos it is easy to note the high pressure that
sheep make near the gate, but it also seems that the animals
at the back of the herd are not pushing at all. Therefore, if
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Abstract framework

V set of vertices, E ∈ V × V set of edges, r ∈ R
E resistances,

Root denoted by o ∈ V , and Γ ⊂ E the boundary.

N = (V,E, r, o,Γ) : rooted network

Pressures p(x) ∈ R
V defined at nodes, and fluxes u ∈ R

E on edges.

Poiseuille’s law

p(x)− p(y) = d⋆(x, y) = r(x, y)u(x, y).

Kirchhof’s law for interior vertices

−
∑

y∼x

u(x, y) = du(x) = 0

where y ∼ x means that y is connected to x (i.e. (x, y) ∈ E).
−d discrete counterpart of the divergence operator
d⋆ discrete counterpart of the gradient operator
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Loi de Kirchhof

Discrete Darcy problem

⎧

⎨

⎩

u+
1
r
d⋆p = 0 in ∈ E

du = 0 ∈ V̊ = V \ ({o} ∪ Γ)

Dirichlet problem : p(o) = 0, p|Γ = Pγ prescribed.
Dissipated energy :

∑

E

1
r(x, y)

|p(y)− p(x)|2 =
∑

E

r(e) |u(e)|2 .

Discrete analog of the standard Darcy problem
{

u+ k∇p = 0 ∈ Ω

−∇ ·u = 0 ∈ Ω

Dirichlet problem : p|Γ = Pγ prescribed.
Dissipated energy :

∫

Ω

k |∇p|2 =
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Ω

1
k
|u|2 .
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66 3. THE LUNG AS A RESISTIVE TREE

which corresponds to the dissipated energy within the network.

Dirichlet problem and maximum principle. In the context of ventilation, we shall be
especially interested in the following problem, presented here in an abstract form: we consider a
rooted network (V,E, r, o,Γ) (see Def. 3.16), and we denote by g a collection of pressure values
over Γ, and the associated Dirichlet problem

⎧

⎪
⎪
⎨

⎪
⎪
⎩

−∆p(x) = 0 ∀x ∈ V̊ ,

p(o) = 0

p(x) = g(x) ∀x ∈ Γ,

(3.16)

where ∆ is the discrete Laplacian associated to the resistive network:

−∆p(x) = dcd⋆p(x) =
∑

y∼x

c(x, y)(p(x) − p(y)).

Proposition 3.19. Problem (3.16) admits a unique solution.

Proof. The problem writes

−
∑

y∼x

c(x, y) (p(y)− p(x)) = 0 ∀x ∈ V̊

with p(o) = 0 and p(y) = g(y) for any y ∈ Γ. We denote by H the space of pressure fields on V ,
by Hg the affine subset of pressures fields such that p(o) = 0 and p(y) = g(y) for any y ∈ Γ, and
by H0 the underlying vector space (with homogeneous condition at o and Γ). As in the context
of elliptic PDE problems, the variational formulation of the problem is obtained by multiplying
the previous equation by q(x), where q is in H0, and by summing up over V :

−
∑

x∈V

∑

y∼x

c(x, y) (p(y)− p(x)) q(x) = 0 ,

which yields
∑

e∈E

c(e) (p(y)− p(x)) (q(y)− q(x)) = 0 ∀q ∈ H0.

Thanks to Lax Milgram theorem A.2, it is equivalent to minimizing the quadratic functional

J(p) =
1

2

∑

e∈E

c(e) |p(y)− p(x)|2

over the affine space Hg. Therefore the problem admits a unique solution p ∈ Hg.

Definition 3.20. (Effective resistance of a network)
Let N = (V,E, r, o,Γ) be a rooted network according to Def. 3.16. We consider a uniform

pressure field g ≡ 1 on Γ. We denote by p the solution to Dirichket problem (3.16), which is
unique according to Proposition 3.19, and by u = −d⋆p the associated flux field. The global flux
Q is obtained by summing up fluxes flowing in the network through Γ, or equivalently flowing
out through o:

Q =
∑

x∼o

u(o, x) = −du(o). (3.17)

The equivalent resistance of N is defined as R(N ) = 1/Q.

On élimine la vitesse : problème de Dirichlet
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Remarque (pour numériciens) : le laplacien discrétisé par éléments finis peut 
être vu comme exprimant un réseau résistif, si tous les angles sont aigus
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Figure 17.2 – Assemblage de la matrice élémentaire

Pénalisation

Cette approche consiste à relaxer la contrainte en considérant le problème de minimisation
sur V tout entier, mais en introduisant un terme supplémentaire dans la fonctionnelle, qui
pénalise le fait de ne pas vérifier la contrainte. On peut par exemple considérer

Jε : v !−→ 1

2

∫

Ω
|∇v|2 +

1

2ε

∫

ω
v2 −

∫

Ω
fv.

17.6 Éléments finis et réseaux résistifs

Soit Th une triangulation d’un domaine Ω, et A la matrice résultant de la discrétisation
par éléments finis P 1 de la forme blinéaire

a(u, v) =
∫

Ω
∇u ·∇v.

Pour i et j voisins, l’intégrale de ∇wi ·∇wj résulte de deux contributions (les deux tri-
angles qui contiennent i et j). L’une quelconque de ces contributions (voir figure 17.2) s’écrit

∫

K
∇wi ·∇wj = aire(K) hi · hj
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|hi|2 |hj |2
.

On note D = vi ∧ vj. L’aire du triangle vaut D/2. Par ailleurs, la hauteur |hi| du triangle
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o

γ

Γ

p < 0p = 0

−∇ · k∇p = 0

Figure 1. Analogy with the Darcy problem.

the root o (entrance of the trachea) plays the role of the inner hole, and the set of ends plays
the role of the external boundary (see Fig. 1).

6.1. Abstract trace theorems for infinite networks

We collect here some standard properties of general resistive networks, without any assumption
on their structure. The particular case of dyadic trees is addressed in Section 6.2. The definition
we shall refer to is a direct extension to the one we used in the finite setting. It aims at describing
the situation where some fluid is injected in the network through a single point.

Definition 6.1. We define an infinite resistive network as a triple

N = (V,E, r),

where V is the set of vertices (countably infinite), E, subset of V × V , is the set of edges. We
assume that E is symmetric ((x, y) ∈ E ⇔ (y, x) ∈ E), but we will follow the convention that
edges are only counted once when summing up over E. Finally, r( · ) is a symmetric resistance
field defined over E: r(y, x) > 0 is defined5 and equal to r(x, y) as soon as (x, y) ∈ E. We will
also make use of the field of conductances, defined by c(e) = 1/r(e) for any e ∈ E. We assume
that the number of neighbors is uniformly bounded:

sup
x∈V

♯ {y , (x, y) ∈ E}} < +∞.

We shall refer to N = (V,E, r, o, ) as a rooted infinite network when a vertex o ∈ V has been
singled out as the root.

Note that in the case of infinite networks, we do not consider any subset of V as the outlet
boundary. The counterpart of the boundary Γ in Def. 3.16 (for finite networks) shall be defined
for vertices “at infinity”.

5We rule out the values 0 and +∞ for resistances; they could be allowed by considering that a 0 resistance
between two vertices means that they are in fact identified, and an infinite resistance that they are not connected.



La théorie autour du problème de Poisson est essentiellement  
transposable dans le cas discret (Doyle & Snell, 84), avec quelques 
différences

La notion de régularité n’a pas de sens (au moins pour un réseau fini)

Pour les réseaux infinis (la frontière, ou espaces des bouts, est alors 
l’ensemble des chemins vers l’infini quotienté par la relation d’équivalence 
d’être confondus au delà d’un certain rang), on ne peut pas définir la trace 
comme extension de la notion de restriction de fonctions régulières définies 
au-delà de la frontière : on doit procéder de l’intérieur

Interprétation probabiliste (mouvement  brownien remplacé par 
marche aléatoire, avec probabilités de transition inversement 
proportionnelles aux résistances)

L’interprétation de l’équation de la chaleur comme flot gradient de 
l’entropie dans l’espace de Wasserstein est transposable :  
flot gradient de l’entropie relative par rapport à la mesure stationnaire 
pour une certaine métrique de type Wassertein (J. Maas 2011)



Autre contexte : transport congestionné 

Zuriguel et al. 16’

We will also focus our attention on the changes of direction in
each ant trajectory for all discrete times ti that are given by dhi =
(hi +1 ! hi).

2.1.3. Densities for ants and simulated human systems
From the trajectories x(ti), either from an ant experiment or

pedestrian simulations, the density at any given area is computed
by counting the number of agents inside of it and dividing by the
corresponding area: Density qj(ti) = Nj(ti)/Aj, where Nj(ti) is the
number of agents at time ti in the measurement area Aj.

Note that as Nj evolves when agents enter and go out from a
given measurement area, this is a function of time and so, the
density will also be a function of time.

With this methodology, the density can be calculated at differ-
ent areas. By dividing the whole area of the arena into a square grid
of smaller areas, a density map can be obtained at any time step or
by averaging over the whole evacuation process.

We considered a grid of 0.3 cm " 0.3 cm for the ant arena and a
grid of 0.5 m " 0.5 m in the case of the pedestrian system.

Also, we wanted to study the density at selected relevant mea-
surement areas that are shown in Fig. 1A and B and we called
them: door area, up area and down area following the nomencla-
ture in this figure. These areas are about 1.5 cm2 in the case of
the ant arena (Fig. 1A) and about 2 m2 in the case of pedestrian
simulation (Fig. 1B).

Taking into account these three selected areas, a final density
metric considered was the ‘‘Door Density Ratio,’’ defined as the

average density at the door area divided by the maximum density
of the average of the other two areas. If this ratio is greater than
one, it indicates that the mean density at the door area is greater
than the densities at the other areas.

3. Results: Ants experiments and pedestrian simulations

3.1. Distribution of time lapses ‘‘dt’’

In this section we will confirm the FIS effect, reported in Soria
et al. (2012), using different metrics and study the distribution of dt.

By grouping the time lapses dt (see Section 2.1.1) according to
the citronella concentration used in the trial, the complementary
cumulative distribution function (CDF) of dt can be computed for
the four distributions as shown in Fig. 2B. The lowest distribution
corresponds to 75% citronella concentration, confirming the
reported result when the mean evacuation time for the first 70 ants
was measured (Soria et al., 2012).

These distributions were analyzed using the methodology pro-
posed by Clauset et al. (2009) and it turned out that they did not
display a power-law tail (p-value <10!2). This is very important
because in recent observations of experimental FIS effects in gran-
ular material (Gago et al., 2013), herd of sheep (Zuriguel et al.,
2013) and humans (Garcimartín et al., 2014) the tail of the distri-
bution of dt was found to be power-law. This result indicates a very
significant difference in the nature of egress in ants and other
systems where the friction is relevant.

Fig. 3. Differences between ant experiment and SFM simulations. Snapshots at different stages of typical evacuation processes. The egress of ants (in this particular case using
75% citronella concentration) is shown at the beginning (A), the middle (B) and at the end (C) of the evacuation. The evacuation process of pedestrians simulated using the
SFM is shown at the beginning (D), the middle (E) and at the end (F) of the evacuation. In both cases the figures near the measurement areas are the number of agents in that
area. Particles with red dots are inside some measurement areas, while the particles signaled with green are outside these areas. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

D.R. Parisi et al. / Safety Science 72 (2015) 274–282 277

Parisi et al. 15’

762   A. Garcimartín et al.  /  Transportation Research Procedia   2  ( 2014 )  760 – 767 

 

Fig. 1. Construction of an spatio-temporal diagram. (a) Picture taken inside the room. (b) Frame from the recording shot just after the door, 
showing the sampling line. (c) A portion of the diagram, where the centroids of the red hats worn by volunteers have been detected and marked 
(white circles). 

2. Experimental procedures 

The experiments took the form of evacuation drills. The room used is an indoor gym with a stand in the first floor 
that provides a convenient observation point just above the door. As we wanted a smaller exit than the existing one, 
we reduced the doorway width to 75 cm by placing wood planks at the sides, which were in turn covered with 
protective foam to avoid bruises. The door led to a wider corridor (3 m wide), and at its end another space was used 
as an assembly point. Standard video surveillance cameras were placed in zenithal position over the door (pointing 
downwards), both inside the room and outside (in the corridor).  

A total of 85 students in the 4th year of the School of Architecture at the University of Navarra volunteered to 
perform these exercises. They are boys and girls about 22 years old. They were told to wear dark clothes and each 
person was given a red hat. In this way, we smoothed the way for the subsequent image processing. In order to 
manage the tests, and to control the procedures, four professors, two technicians and four graduate students were 
also present. The managing staff all carried wearable radio devices allowing two-way communication. Apart from 
the image acquisition cameras, other surveillance cameras were also used to monitor the tests. A control point was 
established on the first floor stand, from where the head supervisor gave orders by radio to the managing staff. 
Audible signals for the volunteers were arranged in order to start and to stop the tests. An emergency stop was also 
planned to be issued whenever asked for by participants or managers (for instance, a few inconsequential falls of a 
participant caused some tests to be interrupted). Dry runs were performed beforehand until everybody was at ease 
with the procedure. The evacuation drills took place safely and uneventfully. 
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FIG. 6. Pictures illustrating three different types of clogs. Figure (a) represents the typical clog observed when there is no obstacle or when
the obstacle is far from the door: the hips of the sheep clog at the very door. Figure (b) shows a situation found when the obstacle is placed at
60 cm where sheep clog between the obstacle and the doorjamb. In (c) we display a case where the clogging between the obstacle at 60 cm and
the doorjamb becomes evident as it happens in only one side; all the sheep in the other side have already gone into the barn. The lines drawn
in (a) and (b) indicate the narrower place through which the animals have to pass in each case. Note that (c) corresponds to a video that was
recorded with a different zoom than (a) and (b).

very likely to occur), we observe that the most conspicuous
feature of the distribution reported in Fig. 5(a) for the obstacle
scenario is qualitatively recovered. Of course, the aim of
this representation is just providing a sound interpretation
of the surprising results obtained when the obstacle is at
60 cm. A complete quantitative description would require more
experiments and, overall, to take into consideration the entire
geometry of the system. Indeed, there is a number of aspects
that might have an important influence and should therefore
be considered, such as the merging of flows after the two
bottlenecks [35], the passage through the actual door, and the
fact that the flow through inclined gates is not necessarily the
same than through horizontal ones (see a granular example
in [36,37]).

IV. CONCLUSIONS

In this work we have reported detailed analysis of the effect
that obstacle position has on the sheep flow properties through
constrictions. We show, with live beings, the existence of

FIG. 7. Logarithmic plot of the complementary cumulative dis-
tribution function of !t of two different scenarios. Red dots are used
to represent a hypothetical distribution obtained by combining the !t

of two sets of 16 evacuations through a 77 cm wide door. This is done
hypothesizing that the passage through both sides of the obstacle can
be modeled as an uncorrelated passage through two narrower doors.
For comparison with the results of Fig. 6, the black line indicates the
distribution of !t obtained for the 96 cm wide door without obstacle.

a nonmonotonous behavior of the flow rate versus obstacle
position. Among the locations studied, 80 cm seems to be the
best choice: at a closer position the obstacle is detrimental,
while a more distant placement is beneficial but the effect
becomes weaker than for the 80 cm case. Although we cannot
assure that 80 cm is the optimum position, these results point
towards the existence of such an optimum distance around this
value. At the same time, these outcomes evidence the extreme
sensitivity of the flow to the obstacle position stressing the
great importance of making a proper choice depending on the
situation.

Furthermore, we observe that when the obstacle is too close
to the door the distribution of passage times is notably different
to the other situations. In particular, we observe a reduction of
the probability of finding clogs between 1 and 2 s, followed
by an important increase of this probability for larger clogs.
We propose that this surprising behavior could be related with
an alteration of the nature of clogs as, obviously, when the
obstacle is too close to the door, clogging develops between
the doorjamb and the obstacle instead of at the proper door.
Therefore, the flow rate in this scenario becomes a combination
of the flows through both sides of the obstacle. Based on
this idea we have proposed a simple model that qualitatively
reproduces the features obtained in the distribution function.
We expect further investigation of this effect as, up to now, the
change in the phenomenology when the obstacle is too close
to the door has been only thoroughly studied for the case of
inert grains flowing out of a silo. Unfortunately, in the silo
case, nothing similar to the sheep behavior can be observed as
when there is a clog, it remains stable forever, contrary to what
happens with sheep, pedestrians, or active matter in general.

Finally, we report that, in all the scenarios analyzed, the
flow rate is constant over the whole process. This result differs
from what was recently reported for the case of pedestrians,
and suggests either that pressure has a negligible effect on the
flow rate, or that pressure remains constant during the entrance
procedure. The first hypothesis seems to be incompatible with
the proved fact that the obstacle leads to flow improvement, so
we think that the second option is more trustworthy. Indeed,
looking at the videos it is easy to note the high pressure that
sheep make near the gate, but it also seems that the animals
at the back of the herd are not pushing at all. Therefore, if
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U : vitesse spontanée
Contrainte  : r · u � 0 sur la zone saturée

4 B. Maury

where the set H1
ρ of pressure test functions is defined as

H1
ρ =

{
p ∈ H1(Ω) , p(1− ρ) = 0 a.e.

}
.

The macroscopic problem (macroscopic counterpart of (2.1)) simply writes

∣∣∣∣∣

∂ρ

∂t
+∇ · (ρu) = 0

u = PCq
U,

(2.7)

where the continuity equation is meant in a weak sense (see e.g. [23]), and the
projection on Cq corresponds to the L2 norm. The formal similarity with the mi-
croscopic approach is underlined by the saddle-point formulation of the projection
problem. Let us define the essential saturated zone as the largest open set ω ⊂ Ω
such that ρ(x) = 1 for a.e. x ∈ ω. The projection problem takes the form: Find
(u, p) ∈ L2(ω)×H1

0 (ω) such that

∣∣∣∣∣∣∣∣∣∣∣

u+∇p = U in ω,

−∇ · u ≤ 0 in ω,

p ≥ 0 in ω,
∫

ω
u ·∇p = 0,

(2.8)

that is the macroscopic counterpart of system (2.5). It takes the form of a Darcy
problem, that is commonly used to describe the flow of an incompressible fluid in
a porous medium (see e.g. [4]). The latter problem provides the effective velocity
in ω only. The overall velocity u is obtained by extending u|ω with U (the actual
velocity is obviously the desired one outside the saturated zone).

Proposition 2.1. Problem (2.8) has a unique solution (u, p) ∈ L2(ω)2 ×H1
0 (ω).

Proof. This is a straightforward consequence on the fact that the operator

B̂ : v ∈ L2(ω)2 (−→ −∇ · u ∈ H−1(ω) ,
〈
B̂v, p

〉
=

∫
v ·∇p,

is surjective, thanks to Poincaré inequality in H1
0 (Ω), so that B̂⋆ is one-to-one and

has closed range. As a consequence, the polar cone to the set of feasible velocities
Cq can be written

C◦
q =

{
w ∈ L2(ω)2 ,

∫

Ω
w · v ≤ 0 ∀v ∈ Cq

}
=

{
∇p , p ∈ H1

0 (ω) , p ≥ 0
}
,

hence the existence and uniqueness of a saddle-point (u, p).

Whether this macroscopic model could be properly obtained through a micro-
macro limit from the first will be addressed, and in some way answered, in a
negative way in Section 4.
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Figure 3. Primal and dual networks

matrix, then kerB⋆ ∩ R
Nc

+ = {0}.

Proof. Let p be such that B⋆p = 0, with p ≥ 0. Consider a connected sub-cluster
of q (a connected maximal subset of discs in contact), like the one represented
in Fig. 2d. We denote by J the corresponding set of indices. Consider now the
convex-hull of centers (qi)i∈J , and pick one qi that is an extremal point of the
convex hull. By Hahn Banach’s Theorem, qi can be separated from the convex
hull of the remaing centers, by an hyperplane normal to some vector w. Now write
the force balance for qi along direction w:

∑

j∼i

pijeji · w = 0.

By construction eji ·w > 0 for all j in contact with i, so that all pressures involving
i are equal to zero. Applying the same approach recursively makes it possible to
eliminate extremal points one after the other, thus the pressure is identically 0.

Proposition 4.2. Let q ∈ K and U ∈ R2N be given, u = PCq
U . Then the solution

set for pressure, i.e. the set Λ of all those pressure fields p ∈ R
Nc
+ such that (u, p)

is a solution to (2.5), is bounded.

Proof. The solution set writes

Λ =
{
p ∈ R

Nc , B⋆p = U − u , p ≥ 0
}
.

If a sequence (pn) of pressures in Λ goes to infinity, then, up to a subsequence,
pn/ |pn| converges to p ∈ kerB⋆ ∩ R

Nc

+ , that is necessarily 0.

Discrete Laplacian. The previous remarks explain a difference in the behaviour
of the two models, that is highly significant if one considers evacuation processes.
In the macroscopic setting, the congested zone upstream the exit has the typical
shape represented in Fig. 4 (left). The congested zone is denoted by ω, and the
desired velocity field points toward the exit, and verifies ∇ · U < 0. The pressure
field is then solution of a Poisson problem

−∆p = −∇ · U > 0, (4.2)

p = 0

p = 0

Sur la sortie : 

Les gens sortent plus vite que s’ils étaient seuls …

u · n = U · n� @p

@n
� U · n

u : vitesse effective, la plus proche de U parmi les vitesses admissibles
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We consider a collection of desired velocities

U = (U1, . . . , UN ).

In the simplest setting (asocial and interchangeable individuals), each Ui de-
pends on the position of i only. In the latter case we have that Ui = U0(xi),
where U0 is the desired velocity fields which is shared by all individuals.
More complex models can be elaborated by writing U = U(x), which ex-
presses that the desired velocity of an individual depends upon their posi-
tion, but also upon the position of others.

The cone of feasible velocities associated to a configuration x is then

Cx = {v , Dij(x) = |xj − xi|− 2r = 0 ⇒ Gij · v ≥ 0} . (4.3)

where

Gij = ∇Dij(x) = (0, . . . , 0,−eij, 0, . . . , 0, eij, 0, . . . , 0) ∈ R
2N

is the gradient of the distance from i to j. Note that Gij ∈ R2N has
only 4 non-zero components, which correspond to the degrees of freedom of
individuals i and j. The model expresses the fact that the effective velocity
is the closest to the desired one among all feasible velocities, i.e.

dx

dt
= PCxU(x), (4.4)

where PCx is the euclidean projection on Cx, defined by (4.3).

Saddle-point formulation

The projection problem (4.4) consists in minimizing

J(v) =
1

2
|v − U |2 , (4.5)

of the set Cx of feasible velocities. The constraint can be written in matrix
form:

Cx =
{

v ∈ R
2N , Bv ≤ 0

}

,

where each row of B expresses a non-overlapping contraint between two
disc which are in contact in the current configuration. More precisely, for
two entities i and j in contact, one defines the center-to-center unit vector
(see Fig. 4.3)

eij =
xj − xi

|xj − xi|
,
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where U0 is the desired velocity fields which is shared by all individuals.
More complex models can be elaborated by writing U = U(x), which ex-
presses that the desired velocity of an individual depends upon their posi-
tion, but also upon the position of others.
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where
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2N

is the gradient of the distance from i to j. Note that Gij ∈ R2N has
only 4 non-zero components, which correspond to the degrees of freedom of
individuals i and j. The model expresses the fact that the effective velocity
is the closest to the desired one among all feasible velocities, i.e.

dx

dt
= PCxU(x), (4.4)

where PCx is the euclidean projection on Cx, defined by (4.3).

Saddle-point formulation

The projection problem (4.4) consists in minimizing

J(v) =
1

2
|v − U |2 , (4.5)

of the set Cx of feasible velocities. The constraint can be written in matrix
form:

Cx =
{

v ∈ R
2N , Bv ≤ 0

}

,

where each row of B expresses a non-overlapping contraint between two
disc which are in contact in the current configuration. More precisely, for
two entities i and j in contact, one defines the center-to-center unit vector
(see Fig. 4.3)

eij =
xj − xi

|xj − xi|
,

Contrainte  : quand i et j sont en contact Gij · u � 0
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r
r

eij−eij
xj

xi Dij

Fig. 4.3: Notation

and the corresponding row is

Gij = (0, . . . , 0,−eij, 0, . . . , 0, eij, 0, . . . , 0) ∈ R
2N .

Proposition 4.2. Minimizing J (defined by (4.5)) over Cx (defined
by (4.3)) is equivalent to the following saddle point formulation:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u−
∑

i∼j

pij Gij = U,

−Gij · u ≤ 0 ∀i ∼ j,

p ≥ 0,

Gij · u > 0 =⇒ pij = 0.

(4.6)

Proof. This is a direct consequence of Proposition A.4, page 115.

4.3 Numerical scheme

We are interested here in approximating solution to (4.4). The scheme we
propose is based on a very simple idea, which was introduced in the context
of granular flows [Maury (2006)]. Consider a feasible configuration x ∈
K ⊂ R2N (where K is defined by (4.2)), and a time step τ > 0. Applying to
this configuration a velocity field v during τ yields the configuration x+τv.
The idea consists in replacing the admissibility of the new configuration,
which reads

Dij(x + τv) ≥ 0 ∀i, j , i ̸= j,

by first order expansions of those non-overlapping constraints, i.e.

Dij(x) + τ∇Dij(x) · v ≥ 0 ∀i, j , i ̸= j.
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∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
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propose is based on a very simple idea, which was introduced in the context
of granular flows [Maury (2006)]. Consider a feasible configuration x ∈
K ⊂ R2N (where K is defined by (4.2)), and a time step τ > 0. Applying to
this configuration a velocity field v during τ yields the configuration x+τv.
The idea consists in replacing the admissibility of the new configuration,
which reads
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by first order expansions of those non-overlapping constraints, i.e.
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4 B. Maury

where the set H1
ρ of pressure test functions is defined as

H1
ρ =

{
p ∈ H1(Ω) , p(1− ρ) = 0 a.e.

}
.

The macroscopic problem (macroscopic counterpart of (2.1)) simply writes

∣∣∣∣∣

∂ρ

∂t
+∇ · (ρu) = 0

u = PCq
U,

(2.7)

where the continuity equation is meant in a weak sense (see e.g. [23]), and the
projection on Cq corresponds to the L2 norm. The formal similarity with the mi-
croscopic approach is underlined by the saddle-point formulation of the projection
problem. Let us define the essential saturated zone as the largest open set ω ⊂ Ω
such that ρ(x) = 1 for a.e. x ∈ ω. The projection problem takes the form: Find
(u, p) ∈ L2(ω)×H1

0 (ω) such that

∣∣∣∣∣∣∣∣∣∣∣

u+∇p = U in ω,

−∇ · u ≤ 0 in ω,

p ≥ 0 in ω,
∫

ω
u ·∇p = 0,

(2.8)

that is the macroscopic counterpart of system (2.5). It takes the form of a Darcy
problem, that is commonly used to describe the flow of an incompressible fluid in
a porous medium (see e.g. [4]). The latter problem provides the effective velocity
in ω only. The overall velocity u is obtained by extending u|ω with U (the actual
velocity is obviously the desired one outside the saturated zone).

Proposition 2.1. Problem (2.8) has a unique solution (u, p) ∈ L2(ω)2 ×H1
0 (ω).

Proof. This is a straightforward consequence on the fact that the operator

B̂ : v ∈ L2(ω)2 (−→ −∇ · u ∈ H−1(ω) ,
〈
B̂v, p

〉
=

∫
v ·∇p,

is surjective, thanks to Poincaré inequality in H1
0 (Ω), so that B̂⋆ is one-to-one and

has closed range. As a consequence, the polar cone to the set of feasible velocities
Cq can be written

C◦
q =

{
w ∈ L2(ω)2 ,

∫

Ω
w · v ≤ 0 ∀v ∈ Cq

}
=

{
∇p , p ∈ H1

0 (ω) , p ≥ 0
}
,

hence the existence and uniqueness of a saddle-point (u, p).

Whether this macroscopic model could be properly obtained through a micro-
macro limit from the first will be addressed, and in some way answered, in a
negative way in Section 4.

Rappel du macro : 
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and the corresponding row is

Gij = (0, . . . , 0,−eij, 0, . . . , 0, eij, 0, . . . , 0) ∈ R
2N .

Proposition 4.2. Minimizing J (defined by (4.5)) over Cx (defined
by (4.3)) is equivalent to the following saddle point formulation:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ui −
∑

i∼j

pij Gij = Ui,

−Gij · u ≤ 0 ∀i ∼ j,

p ≥ 0,

Gij · u > 0 =⇒ pij = 0.

(4.6)

Proof. This is a direct consequence of Proposition A.4, page 115.

The previous problem can be written as a discrete version of a Darcy
problem, by introducing the matrix B which implements the constraints on
the velocity:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u+B⋆p = U,

Bu ≤ 0,

p ≥ 0,

p · Bu = 0.

(4.7)

4.3 Numerical scheme

We are interested here in approximating solution to (4.4). The scheme we
propose is based on a very simple idea, which was introduced in the context
of granular flows [Maury (2006)]. Consider a feasible configuration x ∈
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Figure 3. Primal and dual networks

matrix, then kerB⋆ ∩ R
Nc

+ = {0}.

Proof. Let p be such that B⋆p = 0, with p ≥ 0. Consider a connected sub-cluster
of q (a connected maximal subset of discs in contact), like the one represented
in Fig. 2d. We denote by J the corresponding set of indices. Consider now the
convex-hull of centers (qi)i∈J , and pick one qi that is an extremal point of the
convex hull. By Hahn Banach’s Theorem, qi can be separated from the convex
hull of the remaing centers, by an hyperplane normal to some vector w. Now write
the force balance for qi along direction w:

∑

j∼i

pijeji · w = 0.

By construction eji ·w > 0 for all j in contact with i, so that all pressures involving
i are equal to zero. Applying the same approach recursively makes it possible to
eliminate extremal points one after the other, thus the pressure is identically 0.

Proposition 4.2. Let q ∈ K and U ∈ R2N be given, u = PCq
U . Then the solution

set for pressure, i.e. the set Λ of all those pressure fields p ∈ R
Nc
+ such that (u, p)

is a solution to (2.5), is bounded.

Proof. The solution set writes

Λ =
{
p ∈ R

Nc , B⋆p = U − u , p ≥ 0
}
.

If a sequence (pn) of pressures in Λ goes to infinity, then, up to a subsequence,
pn/ |pn| converges to p ∈ kerB⋆ ∩ R

Nc

+ , that is necessarily 0.

Discrete Laplacian. The previous remarks explain a difference in the behaviour
of the two models, that is highly significant if one considers evacuation processes.
In the macroscopic setting, the congested zone upstream the exit has the typical
shape represented in Fig. 4 (left). The congested zone is denoted by ω, and the
desired velocity field points toward the exit, and verifies ∇ · U < 0. The pressure
field is then solution of a Poisson problem

−∆p = −∇ · U > 0, (4.2)

Continu

BB?u = BU

Discret
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We consider that each individual tends to follow a desired velocity Ui (pos-
sibly varying in time), so that U = (U1, . . . , UN) is the global desired veloc-
ity. We aim at preserving the non-overlapping constraint, which amounts
to prescribe a non-negative relative velocity for segments in contact. We

x1 x2 xN

2r

Fig. 4.1: One-dimensional setting

accordingly define the set of feasible velocities as

Cx =
{

v = (v1, . . . , vN ) ∈ R
N , xn+1 − xn = 2r =⇒ vn+1 − vn ≥ 0

}

.

Model 4.1. The one-dimensional granular model reads

dx

dt
= PCx (U) .

Saddle-point formulation

Let us consider a fully congested situation : each individual is in contact
with his neighbors, i.e. x2 − x1 = 2r, x3 − x2 = 2r, etc . . . .

Projecting U on Cx amounts to minimize

J(v) =
1

2

∑

|vi − Ui| 2

over the set Cx of feasible velocities, which can be written

Cx =
{

v = (v1, . . . , vN ) ∈ R
N Bv ≤ 0

}

,

where B is the (N − 1)×N matrix

B =

⎛

⎜
⎜
⎝

1 −1 0 · · 0
0 1 −1 · · ·
· · · · · 0
· · · · 1 −1

⎞

⎟
⎟
⎠

. (4.1)

This problem fits in the assumptions of Proposition A.4, page 115: there
exists p ∈ R

N−1
+ such that

{

∇J(u) +B⋆p = 0

Bu ≤ 0.

avec β = ∆tV/(2∆x), de la façon suivante

beta = 0.5*V*dt/dx

ones = np.ones(J)

aux = [ones,beta*ones[:-1],-beta*ones[:-1],-beta*ones[0],beta*ones[0]]

Adv1d = ssp.diags(aux,[0,1,-1,(J-1),-(J-1)],format=’csr’)

Le calcul du nouveau champ à partir du précédent peut alors se faire à l’aide de la fonction
spsolve du package scipy.sparse.linalg :

uu =sla.spsolve(Adv1d,uu)

N.B. Le format csr 95 spécifié lors de l’assemblage permet une utilisation optimale de
solve.

Assemblage des matrices du Laplacien en dimension d ≥ 2

En dimension 1 la matrice du Laplacien discret avec conditions de Dirichlet (valeur im-
posée à 0 aux extrémités) s’écrit

A1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 −1 0 · · 0

−1 2 −1 0 · ·

0 −1 · · ·

· · · · ·

· · 2 −1

0 · · 0 −1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

En dimension 2 d’espace, le Laplacien discret agit sur les valeurs au point (i∆x, j∆x) de la
discrétisation comme suit

4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1.

On peut vérifier que la matrice associée peut s’écrire

A2 = A1 ⊗ I1 + I1 ⊗ A1,

où I1 est la matrice identité d’ordre le nombre de point dans chaque direction, et ⊕ est le
produit de Kronecker défini de la façon suivante : si A ∈ Mpq et Brs sont deux matrices, la
matrice C = A ⊗ B est de taille (pr, qs) a une structure (p, q) par blocs, chaque bloc étant de
taille (r, s), égale au produit de aij par la matrice B. On obtient de façon analogue la matrice
du Laplacien 2d pour des conditions aux limites de Neuman, ou des conditions périodiques.

En Python, si A et B sont des matrices creuses, ce produit de Kronecker s’écrit

C = ssp.kron(A,B)

95. Voir http://perso.univ-perp.fr/langlois/images/pdf/mp/scipy.pdf
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In other words, there is a collection of non-negative pressures pn,n+1, for
n = 1, . . . , N − 1, such that, for any two persons n and n+ 1 in contact

un = Un + pn−1,n − pn,n+1.

The Lagrange multipliers can therefore be interpreted as interaction forces
between people in contact, and the actual velocity of n is his desired velocity
corrected by the net action of his neighbors, pn−1,n − pn,n+1.

Let us consider the following extreme, yet illustrative, situation: N
individuals in a row tend to go leftward with the same velocity −U < 0,
with a wall located at 0 (see Fig. 4.2). The solution is obviously static:

....

....

1 2 3 N

Fig. 4.2: Heading straight into the wall (hard setting)

all actual velocities are 0, which is made possible by positive pressures
p0,1, p1,2, . . . , PN−1,N , where p01 corresponds to the action of the wall
on individual 1. A straightforward computation exhibits a hydrostatic like
pressure field:

pN−1,N = U , pN−2,N−1 = 2U , . . . , p0,1 = NU.

This example illustrates an important feature of highly congested crowds:
the action of individuals sum up to create high interaction forces. In the
present case, individual 1 is crushed with an intensity that grows to +∞
with the number of people behind him.

4.2 Two-dimensional model

We represent individuals as rigid discs of common radius r. The position
vector is

x = (x1, x2, . . . , xN ) ∈ R
2N .

The set of feasible configurations (no overlapping) is defined as

K =
{

x ∈ R
2N , Dij = |xj − xi|− 2r ≥ 0 ∀i ̸= j

}

. (4.2)

En dim 1 : 

En dimension supérieure … 
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p12

p23

p = (p12, p23)

1

2

3

p12

p23

u = B⋆p

u1

u2

u3

1

2

3

εu1

εu2

εu3

εd12

εd23

Fig. 4.7: Geometric representation of p !−→ −B⋆p

expresses a constraint of the type

−Gij · v ≤ 0,

where Gij is the gradient of Dij = |xj − xi| − ri − rj with respect to
x = (x1, . . . , xN ). Consider a collection p of dual variables. The mapping
p !→ −B⋆p realizes the action of those interaction forces on the primal
network, where the native degrees of freedom (positions of disc centers)
are defined. Fig. 4.7 represents this mapping in the case of 3 grains and
two contacts. In the case of a structured situation (for instance a cartesian
network, or a triangular one like in Fig. 4.9), a uniform pressure field has
a zero discrete gradient on interior points2. Yet, in the general case
(when the local granular arrangement does not present any symmetry),
this property is ruled out. For example in the situation represented in
Fig. 4.6, one may straightforwardly check that the sum of unit vectors
pointing inward each of the two grains in contact is not zero. The bi-
dimensional case presents another feature. Consider the cluster represente
on Fig. 4.9. The number of discs is 14, thus the number of degrees of
freedom is 28, and the number of active contacts (dimension of the dual
space) is 29. As a consequence, the kernel of B⋆ ∈ M29,28(R) is non-trivial:
there exists a non-zero pressure field which induces a zero resultant force on
2 On recovers the discrete version of the fact that a constant function has a zero gradient.
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Fig. 4.8: Primal (left) and dual (right) networks

Fig. 4.9: Hyperstatic configuration: 28 degrees of freedom versus 29 con-
straints

the grains A consequence of those pathological behaviour is that the discrete
operator, although it is the discrete analgous to a Laplace operator defined
on the dual network (represented on the right of Fig. 4.8), does not very
the maximum principle. In other words, there may exist pressure fields
p such that BB⋆ ≥ 0 (i.e. the pressure tends to increase all distances),
whereas some individual pressure are negative (attractive forces between
some individuals)

Gradient flow framework

Under some assumptions on the desired velocity field, Problem (4.4) takes
the form of a gradient flow. In other words, the configuration evolves along
the steepest descent direction with respect to some potential. In all gen-
erality, this structure stems from the following assumption: The desired
velocity field

U = (U1, U2, . . . , UN )

is the (opposite of the) gradient of a function x "→ Φ(x), i.e.

U(x) = −∇Φ(x), (4.15)

Graphe primal Graphe dual 



i

j

k

Figure 3.2 – Stencil non structuré

Figure 3.3 – Réseaux primal (gauche) et dual (droite)

Considérons une configuration q ∈ K (voir figure 3.2), et la matrice associée B, dont
chaque ligne exprime une contrainte du type

−Gij · u ≤ 0,

où Gij est le gradient de la distance Dij = |qj − qi| − ri − rj par rapport à q = (q1, . . . , qN ).
L’opérateur discret B⋆ a été identifié dans le cas de la dimension 1 à un gradient discret.
Considérons dans le cas présent une collection p de multiplicateurs de Lagrange. L’opération
−B⋆ réalise l’action de ces forces d’interaction sur le réseau primal de degré de liberté associés
aux centres des particules. dans le cas d’une configuration structurée, (par exemple réseau
cartésien, ou réseau triangulaire comme représenté sur la figure 3.4) un champ de pression p
uniforme est de gradient discret nul sur les points intérieurs au réseau 21. Cependant, dans le
cas général, (quand l’arrangement des disques ne présente pas de symétrie particulière), cette
propriété est invalidée. Par exemple dans le cas de la figure 3.2 on vérifiera immédiatement
que la somme des vecteurs unitaires pointant vers l’intérieur de chacun des deux grains en
gras n’est pas nulle. Le cas bidimensionnel non structuré présente une autre particularité.
Considérer le cluster représenté sur la figure 3.4. Le nombre de disques est 14, donc le nombre

21. On retrouve ici la version discrète d’annulation du gradient d’une fonction constante. Plus précisément,
pour comprendre la présence d’une résultante non nulle au bord, on peut penser, dans le cas continu, au gradient
faible d’une fonction caractéristique d’un domaine borné. Son gradient est effectivement nul à l’intérieur, nul à
l’intérieur de l’extérieur, mais il s’identifie globalement à une distribution vectorielle de simple couche supportée
par la frontière de l’ensemble.
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La matrice n’est  pas à diagonale dominante,  
en outre certains éléments extra diagonaux sont positifs
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FIG. 6. Pictures illustrating three different types of clogs. Figure (a) represents the typical clog observed when there is no obstacle or when
the obstacle is far from the door: the hips of the sheep clog at the very door. Figure (b) shows a situation found when the obstacle is placed at
60 cm where sheep clog between the obstacle and the doorjamb. In (c) we display a case where the clogging between the obstacle at 60 cm and
the doorjamb becomes evident as it happens in only one side; all the sheep in the other side have already gone into the barn. The lines drawn
in (a) and (b) indicate the narrower place through which the animals have to pass in each case. Note that (c) corresponds to a video that was
recorded with a different zoom than (a) and (b).

very likely to occur), we observe that the most conspicuous
feature of the distribution reported in Fig. 5(a) for the obstacle
scenario is qualitatively recovered. Of course, the aim of
this representation is just providing a sound interpretation
of the surprising results obtained when the obstacle is at
60 cm. A complete quantitative description would require more
experiments and, overall, to take into consideration the entire
geometry of the system. Indeed, there is a number of aspects
that might have an important influence and should therefore
be considered, such as the merging of flows after the two
bottlenecks [35], the passage through the actual door, and the
fact that the flow through inclined gates is not necessarily the
same than through horizontal ones (see a granular example
in [36,37]).

IV. CONCLUSIONS

In this work we have reported detailed analysis of the effect
that obstacle position has on the sheep flow properties through
constrictions. We show, with live beings, the existence of

FIG. 7. Logarithmic plot of the complementary cumulative dis-
tribution function of !t of two different scenarios. Red dots are used
to represent a hypothetical distribution obtained by combining the !t

of two sets of 16 evacuations through a 77 cm wide door. This is done
hypothesizing that the passage through both sides of the obstacle can
be modeled as an uncorrelated passage through two narrower doors.
For comparison with the results of Fig. 6, the black line indicates the
distribution of !t obtained for the 96 cm wide door without obstacle.

a nonmonotonous behavior of the flow rate versus obstacle
position. Among the locations studied, 80 cm seems to be the
best choice: at a closer position the obstacle is detrimental,
while a more distant placement is beneficial but the effect
becomes weaker than for the 80 cm case. Although we cannot
assure that 80 cm is the optimum position, these results point
towards the existence of such an optimum distance around this
value. At the same time, these outcomes evidence the extreme
sensitivity of the flow to the obstacle position stressing the
great importance of making a proper choice depending on the
situation.

Furthermore, we observe that when the obstacle is too close
to the door the distribution of passage times is notably different
to the other situations. In particular, we observe a reduction of
the probability of finding clogs between 1 and 2 s, followed
by an important increase of this probability for larger clogs.
We propose that this surprising behavior could be related with
an alteration of the nature of clogs as, obviously, when the
obstacle is too close to the door, clogging develops between
the doorjamb and the obstacle instead of at the proper door.
Therefore, the flow rate in this scenario becomes a combination
of the flows through both sides of the obstacle. Based on
this idea we have proposed a simple model that qualitatively
reproduces the features obtained in the distribution function.
We expect further investigation of this effect as, up to now, the
change in the phenomenology when the obstacle is too close
to the door has been only thoroughly studied for the case of
inert grains flowing out of a silo. Unfortunately, in the silo
case, nothing similar to the sheep behavior can be observed as
when there is a clog, it remains stable forever, contrary to what
happens with sheep, pedestrians, or active matter in general.

Finally, we report that, in all the scenarios analyzed, the
flow rate is constant over the whole process. This result differs
from what was recently reported for the case of pedestrians,
and suggests either that pressure has a negligible effect on the
flow rate, or that pressure remains constant during the entrance
procedure. The first hypothesis seems to be incompatible with
the proved fact that the obstacle leads to flow improvement, so
we think that the second option is more trustworthy. Indeed,
looking at the videos it is easy to note the high pressure that
sheep make near the gate, but it also seems that the animals
at the back of the herd are not pushing at all. Therefore, if
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